PRELIMINARY GEOTECHNICAL ENGINEERING REPORT WESTMINSTER WATER 2025 PRELIMINARY DESIGN PROJECT WESTMINSTER, COLORADO

Prepared For:

CDM Smith Denver, Colorado

October 9, 2020 Revised March 4, 2021

Olsson Project No. 019-1378

March 4, 2021

ő CDM Smith Attn: Brian O'Connor, PE, CFM 555 17th Street. Suite 500 Denver, CO 80202

Re: Preliminary Geotechnical Engineering Report Westminster Water 2025 Preliminary Design Project Westminster, Colorado Olsson Project No. 019-1378

Dear Mr. O'Connor,

Olsson has completed the preliminary geotechnical engineering report for the above referenced project. The enclosed report summarizes our understanding of the project at the time of our investigation, presents the findings of the borings and laboratory tests, discusses the observed subsurface conditions, and based on those conditions, provides preliminary geotechnical engineering recommendations for this project.

We appreciate the opportunity to provide our geotechnical engineering services for this project. If you have any questions or need further assistance, please contact us at your convenience.

Respectfully submitted. Olsson, Inc. 5441 Lindsay Tita, P.E.

Project Engineer

Michael Flanagan, E.I.

Associate Engineer

. .

olsson

-

TABLE OF CONTENTS

	Pa	age
1.	PROJECT UNDERSTANDING	1
1.1.	Geotechnical Scope	
1.2.	Site Information	
1.3.	Project Information	
2.	EXPLORATORY AND TEST PROCEDURES	5
2.1.	Field Exploration.	
2.2.	Laboratory Testing.	
2.3.	Soil Corrosiveness.	
3.	SUBSURFACE CONDITIONS.	
3.1.	Site Geology	
3.1.1.	Regional Physiography	
3.1.2.	Local Geology and Soils	
3.1.3.	Geologic and Geotechnical Hazards	
3.1.3.1.	•	
3.1.3.2.		
3.1.3.3.	•	
3.1.3.4.		
3.1.3.4.		10
3.2.	Soil Stratigraphy	
3.2. 3.3.	Groundwater Observation	
	GEOTECHNICAL CONSIDERATIONS	
4.		
4.1.	Expansive Soils and Bedrock	
4.2.	Groundwater	
4.3.		
5.	SITE PREPARATION	
5.1.	General Site and Subgrade Preparation	
5.2.	Structural Fill	
5.3.	Drainage Considerations	
5.4.	Temporary Slopes and Excavations	
5.5.	Utilities	22
5.6.	Construction Equipment Mobility	23
6.	STRUCTURES	
6.1.	Shallow Foundation Design	
6.2.	Deep Foundations	
6.3.	Building Floor Slabs	
6.4.	Mat Foundations	
6.5.	Lateral Earth Pressures	
6.6.	Seismic Classification	
7.	PAVEMENTS	
7.1.	Pavement Subgrade Preparation	
7.2.	Preliminary Pavement Design	
8.	LIMITATIONS	
REFER	ENCES	40

Appendices

Appendix "A"	Boring Location Map
Appendix "B"	Symbols and Nomenclature, Boring Logs
Appendix "C"	Laboratory Test Results
Appendix "D"	Site Cross-Sections and Surficial Soil Zones

1. PROJECT UNDERSTANDING

1.1. GEOTECHNICAL SCOPE

This preliminary geotechnical engineering report presents the results of the subsurface exploration completed for the proposed new water treatment facility located east of Westminster Boulevard and north of West 98th Avenue in Westminster, Colorado. Twelve (12) borings were drilled to approximate depths of 50 feet below ground surface (bgs) across the site area and three (3) piezometers were installed at select boring locations at the time of drilling. The purpose of this exploration was to evaluate the subsurface and groundwater conditions, and based on the encountered conditions, provide preliminary geotechnical design recommendations for the proposed water treatment plant, including foundations, pavements, earthwork, and other geotechnical considerations associated with the project. Approximate locations of the borings are shown on the Boring Location Plan in *Appendix A*, and boring logs are provided in *Appendix B*.

1.2. SITE INFORMATION

The project is an approximately 40-acre area located along the east side of Westminster Boulevard, from around 650 feet to 2200 feet north of West 98th Avenue in Westminster, Colorado (Figure 1.1). Based on the draft Topographic Exhibit prepared by Flatirons, Inc., draft dated July 8, 2020; the site typically slopes down from the south site bound to the northwest site corner, with a maximum elevation of 5379 feet near the middle of the south property boundary to the minimum elevation of 5326 feet in the northwest corner. The site is currently undeveloped and covered by native grasses, scattered deciduous trees, and shrubs. The site is currently inhabited with a large prairie dog colony and several burrow entrances are visible at the ground surface.

From our review of readily available historical aerial images obtained from Google Earth dating back to 1993, the project site and surrounding areas appear to have remained largely unchanged since in or around September 2002, following the construction of Westminster Boulevard and demolition of the residential and farming property immediately south of the project site that took place sometime between October 1999 and September 2002.

CDM Smith – Westminster Water 2025 Preliminary Design Project

Figure 1.1: Site Location

1.3. PROJECT INFORMATION

We understand the proposed construction will be built during multiple phases and may include sludge lagoons, filters, sedimentation basins, flocculation basins, a chemical building, storage tanks, associated treatment facilities and pipelines. Construction will also include site pavements and landscaping. We further understand that the construction of the proposed facilities will take place over multiple phases with the Phase I storage anticipated to accommodate approximately 10-percent of the total planned capacity and increase with additional phases. Based on the topography of the site and the nature of the proposed construction, we anticipate cuts on the order of 10 to 25 feet may be necessary to accommodate below-grade construction of the planned structures and ponds, and fills on the order of 5 to 10 feet may be desired to balance the project site and reduce the volume of spoil material.

At the time of this report, design of the facility is currently underway. The intent of our investigation was to drill widely spaced borings across the site in order to characterize the

subsurface conditions at the project area, identify any potential geotechnical concerns, and provide preliminary geotechnical design parameters. Final structural loads, final building configurations, and site grading plans were not available at the time of this report. A final geotechnical exploration and engineering report should be completed later in the design process to verify the recommendations discussed in this report and to provide more detailed geotechnical design information and recommendations for the planned construction.

Preliminary structural loads and traffic loads are provided in the tables below. The preliminary counts were provided by CDM Smith (O'Connor, email correspondence, October 2, 2020). These traffic counts were further refined based on discussions with the City of Westminster and CDM Smith (T. Rynders, email correspondence, February 3-4, 2021).

	Shallow Fo	oundations	Deep Foundations		
Building Name	Maximum Loads (psf)	Minimum Loads (psf)	Maximum Loads (kips)	Minimum Loads (kips)	
Sludge Lagoons	1500	100	338	23	
Washwater EQ Basin and Pump Station	2000	350	450	79	
Chemical Building	2000	225	450	51	
Lime Silo Building	2000	225	450	51	
High Service Pump Station	2000	150	450	34	
Electrical Room	1500	400	338	90	
1.5 MG Storage Tank	2500	75	563	17	
Admin Building	2000	75	450	17	
Flocculation Basin	2000	300	450	68	
Sedimentation Basin	2000	300	450	68	
Ozone	2000	300	450	68	
Filters	2000	900	450	203	

Table 1.1. Preliminary Structural Loads

Olsson Project No. 019-1378

Table 1.2	. Preliminary	Traffic Loads
-----------	---------------	----------------------

Vehicle Type	Standa	rd Duty	Heavy Duty	
venicie rype	Count	Frequency	Count	Frequency
Personal Vehicles	12	Daily	18	Daily
Chemical Delivery Trucks (HS-20)	N/A	N/A	10	Monthly
Drying Bed Waste Trucks (HS-20)	N/A	N/A	32	Quarterly
Miscellaneous HS-20 Trucks*	1	Weekly	1	Weekly
Dumpster/Trash Truck*	N/A	N/A	1	Weekly
Fire Truck Loading*	N/A	N/A	3	Monthly

*Values assumed by *Olsson*, not explicitly provided by CDM Smith or the City of Westminster

The preliminary geotechnical recommendations presented herein are based on the available project information, proposed project location, and the subsurface conditions described in this report. If any of the noted information is incorrect, please inform *Olsson* so that we may amend the recommendations presented in this report if appropriate.

2. EXPLORATORY AND TEST PROCEDURES

2.1. FIELD EXPLORATION

Twelve (12) borings were drilled by *Olsson* across the site with an ATV-mounted drill-rig using either hollow-stem or solid-stem, continuous flight augers to approximate depths of 50 feet below the ground surface (bgs). The *Olsson* boring locations were selected during the proposal phase and reviewed by CDM Smith prior to mobilization. A portion of the boring locations were selected based loosely on the site plan sketch provided by CDM Smith (Rynders, email correspondence January 31, 2020) then additional boring locations were scattered throughout the site with the understanding that the site features may shift. Borings were located using a hand-held GPS device and adjusted in the field based on available drilling equipment access and positions of underground and overhead utilities. The locations should be considered accurate only to the degree implied by the methods used to obtain them. True coordinates could vary. Approximate final locations of the borings are shown on the Boring Location Plan in *Appendix A* and the *Olsson* Boring Logs are provided in *Appendix B*.

Soil samples were obtained at selected intervals in the borings using a standard split-spoon sampler during the Standard Penetration Tests (SPT; "SS" on the boring logs) or a ring lined barrel sampler ("MC" on the borings logs). The standard split spoon sampler was driven in three 6-inch intervals and the ring lined barrel sampler was driven in two 6-inch intervals into the substrata with blows from a 140-pound automatic hammer free-falling 30 inches. Penetration resistance (blow counts) was recorded for each 6-inch drive. Penetration resistance of the final 12 inches is considered SPT "N" values for the SS sampler. The blow counts and SPT "N" values are shown on the boring logs at the respective depths the samples were taken. The blow counts shown for the MC sampler are not equivalent to the blow counts obtained from the SS sampler.

An **Olsson** field technician prepared field logs of the material encountered in each boring during the drilling operation. The field logs include the technician's and driller's interpretation of the conditions between samples and approximate elevations of each stratum change. The boring logs presented in *Appendix B* have been modified to represent the project engineer's interpretation of the field logs based on visual classification and laboratory tests of the samples.

Site cross-sections showing the borings and materials encountered within the borings are included in *Appendix D* to assist the project design team and potential contractor in visualizing the subsurface conditions across site. Additionally, a surficial soil zones plan has been included in *Appendix D* showing where, based on the borings and laboratory tests, surficial soil materials and transition zones are most likely located.

2.2. LABORATORY TESTING

The samples obtained from the borings were sealed and returned to the laboratory for testing and classification. All recovered soil samples were visually classified using the Unified Soil Classification System (USCS). The moisture contents of all samples were measured in the laboratory. In addition, Atterberg limits, grain size distribution, in-situ density, and percent passing the #200 sieve tests were performed on selected samples. One dimensional swell/consolidation tests were performed on five (5) selected ring lined barrel samples to evaluate the tendency of the materials to expand with moisture changes and consolidate/settle with loading changes. Hydraulic conductivity tests were performed on two (2) selected ring lined barrel samples to evaluate the ability for water to move through the soil in the approximate planned area of the retention ponds and to provide permeability information of the onsite materials to assist with the development of a dewatering plan, as necessary.

One (1) Standard Proctor compaction test and one (1) R-value test was performed on a bulk sample obtained from materials in the upper 5 feet near the center of site at boring B-6. The R-value test result was less than 5, which correlates to a resilient modulus value of approximately 2500 psi (CDOT 2020).

The laboratory test results are presented on the respective boring logs, and in the laboratory test result graphics in *Appendix C*.

2.3. Soil Corrosiveness

Laboratory testing was also performed by **Olsson** on two (2) bulk soil samples to determine pH, water-soluble sulfate content, water soluble chloride content, and electrical resistivity to evaluate the corrosiveness of the material. The results are presented in *Appendix C* and summarized in the following table.

Test/Sample Location	Soil Type	Water Soluble Sulfate (% mass)	Water Soluble Chloride (% mass)	рН	Soil resistivity (ohms-cm)
B-3, 9 to 15.5 feet	Claystone	0.01	0.023	7.22	357
B-10, 3.5 to 7.5 feet	Sandy clay	0.09	0.019	7.63	457

Table 2.1: Soil Corrosion Series Test Results

The resistivity values indicate that the onsite sandy clay soils and claystone bedrock from the bulk samples are considered severely corrosive to buried metal objects. The onsite soils and rock classify as S0 exposure class indicating no specific cement type is required per ACI 318,

based on sulfate levels less than 0.1 percent by mass. An experienced designer should review these results and evaluate corrosiveness in developing the design for this project.

3. SUBSURFACE CONDITIONS

3.1. SITE GEOLOGY

The following sections describe the geology and potential hazards associated with the project location.

3.1.1. REGIONAL PHYSIOGRAPHY

The project site is located in the Colorado Piedmont Subprovince of the Great Plains Province of Colorado. The Colorado Piedmont Subprovince lies between the High Plains and the Front Range of the Rockies, at elevations distinctly lower than the High Plains. The area consists of a series of river terraces which represent former floodplain levels of the South Platte and Arkansas Rivers and their principal tributaries (Wishart 2011). The Colorado Piedmont Subprovince is bordered by the Raton Basin to the south, the High Plains to the east and north, and the Southern Rocky Mountains to the west.

3.1.2. LOCAL GEOLOGY AND SOILS

The surficial geology, as mapped by Machette (1977) consists of Pinedale-Bull Lake Interglaciation and Late Bull Lake Aged loess. Thickness of the loess is commonly 3 to 5 feet thick with local areas up to 10 feet thick. The loess is described as light-gray-brown to lightbrown nonstratified fine sand and silt, and forms a mantle covering bedrock and alluvium.

The USDA soil survey maps the entire project site within the Nunn-Urban land complex (0 to 2 percent slopes), which is comprised of 65 percent Nunn soil unit, 20 percent Urban Land soil unit, and 15 percent minor soil units. The Nunn unit is noted as clay loam, clay, and loam extending from 0 to 60 inches in depth and is hydrologic group C. Depth to bedrock and depth to water table are both indicated as greater than 60 inches.

Bedrock geology, as mapped by the Tweto (1979), includes Tertiary-Cretaceous aged Denver and Arapahoe Formations. These sedimentary bedrock formations include sandstone, mudstone, claystone, and conglomerate bedrock materials.

3.1.3. GEOLOGIC AND GEOTECHNICAL HAZARDS

Olsson has reviewed the project area, geologic conditions, and published information with regard to site conditions and potential geologic and geotechnical hazards. The following sections discuss commonly considered hazards and the anticipated potential for these to affect development of the project.

3.1.3.1. Seismicity and Faulting

There are no active folds or faulting in the vicinity of the project area (USGS Quaternary Fault Database, 2020). The nearest fault line appears to be the Golden Fault in Golden, Colorado, approximately 10 miles from the project site.

Overall, the seismicity and faulting risks in the vicinity of the site appear low. Seismicity for project design is further discussed in *Section 6.6*.

3.1.3.2. COLLAPSE AND SWELL POTENTIAL

Clays and claystone bedrock across the Rocky Mountain Front Range are known to have variable swell potential, which has been extensively mapped by Hart (1974). The project area, as identified by Hart, lies in an area of moderate swell potential and notes that special foundations are generally necessary to prevent foundation damages.

Soils with moderate to high plasticity are considered to have shrink/swell potential. In general, soils with liquid limit values less than 50 and a plasticity index less than 25 are considered to have low shrink-swell potential. Soils with liquid limit values of 50 to 60 and a plasticity index of 25 to 35 are considered to have moderate shrink-swell potential. Soils with liquid limit values greater than 60 and a plasticity index value greater than 35 are considered to have high shrink-swell potential (Das, 2010).

Sand and silt soils generally have low plasticity and are not considered susceptible to significant swell potential. Lean clay soils (low to moderate plasticity) are generally anticipated to have a liquid limit value less than 50 and a plasticity index value less than 25 and exhibit low to moderate swell potential. Fat clay soils (moderate to high plasticity) have a liquid limit value greater than 50 and a plasticity index value greater than 25 and exhibit high swell potential. Swell potential of the on-site soils is further discussed in *Section 4*.

3.1.3.3. SUBSIDENCE FROM OIL AND GAS PRODUCTION

Oil and gas production is prevalent across the state of Colorado and is regulated by the Colorado Oil and Gas Conservation Commission (COGCC). From publicly available mapping through the COGCC website, it appears no oil and gas production facilities are in the vicinity of the project site. Groups of active production wells were noted to the west, north, and northeast of the project site, but appear to be more than 3 miles from the approximate project area. Subsidence risk due to oil and gas development is considered low.

3.1.3.4. SLOPE STABILITY

The relief across the site is relatively flat, with approximately 55 feet of grade change across the entire 40-acre project area, with an approximate slope on the order of 2.7 percent. Global slope instability issues are not anticipated for the site due to the relatively flat grades.

3.1.3.5. FLOODING

A review of mapped flooding potential from the FEMA flood mapping website indicate there are regulatory floodways located approximately 330 feet east of the east project boundary and approximately 1000 feet north of the northwest site corner. There are also localized areas of Zone AE (1% annual chance flood) and Zone X (0.2% annual chance flood), primarily northwest of the site.

Within the site boundaries, there are no flooding plains mapped and there should be low potential for flooding.

3.2. Soil Stratigraphy

Specific conditions at each **Olsson** boring location are shown on the boring logs in Appendix B. The logs represent subsurface conditions at each specific boring location. Stratification boundaries shown on the boring logs represent the approximate depth of changes in soil types. The changes are more gradual in-situ. The boring logs do not reflect variations that may occur between borings or across the project site. The nature and extent of such variations may not become evident until construction.

The subsurface conditions **Olsson** encountered in the borings generally consisted of stiff to very stiff clay with lesser amounts of sand overlying claystone and sandstone bedrock. In some borings, a thin layer of clayey sand was encountered between the surficial clay and underlying bedrock materials. The surficial material at the boring locations consisted of a thin root zone layer of organic-rich clay approximately 3 to 6 inches deep. Below is a further description of the materials encountered during **Olsson's** subsurface exploration. The specific descriptions within each boring can be found on the boring logs in *Appendix B*.

CLAY: Within all twelve (12) borings, clay was encountered immediately underlying the surficial material/root zone. The clay ranged from low plasticity (lean) to high plasticity (fat), with the higher plasticity soils encountered in the northern portion of the site. Our index testing generally exhibited a trend of decreasing plasticity in surficial clays the further southeast the samples were obtained. The clay soils have varying sand content, with up to 49.2 percent sand. The onsite clays classify as USCS CL and CH soils based on liquid limits ranging from 37 to 56 percent and plasticity indices between 21 and 36 percent. Three one-dimensional swell-

consolidation tests were run on clay soil samples obtained from borings across the site; these materials exhibited swell potentials ranging from 2.1 to 3.2 percent under surcharge pressures of 500 psf and 6.2 percent under a surcharge pressure of 150 psf, indicating moderate to high swell risk potential (CDOT 2020). Laboratory testing performed on the clay soil samples resulted in unconfined compressive strengths of 7.9 and 10.6 tons per square foot. One flexible wall permeability test run on overburden clay materials resulted in a hydraulic conductivity of approximately 5.4×10^{-6} (cm/s).

<u>SANDS</u>: In borings B-2 and B-10, a layer of clayey sand (4.5 and 3.0 feet thick, respectively) was encountered underlying the surficial clays and immediately overlying bedrock. The sand materials were typically medium dense and contained fine grained sand with fines on the order of 43.6 percent. The sand soils were categorized as USCS classification SC (clayey sand).

BEDROCK: Bedrock was encountered within all borings underlying the surficial soils at depths ranging from 4.8 to 9.5 feet below the existing grade. Bedrock consisted of interbedded sandstone and claystone with some minor lenses of siltstone, as typical of the Arapahoe and Denver bedrock formations. The bedrock was relatively soft and was penetrated using standard auger drilling methods. Rock coring was not required to reach the boring termination depths. The anticipated excavation efforts of the bedrock materials are further discussed in *Section 5.1*.

<u>SANDSTONE</u>: Poorly to moderately cemented sandstone bedrock was encountered in significantly thick layers within all borings except B-12 as was typically interbedded with claystone throughout the explored depth. The sandstone had a fines content on the order of 35.4 percent and tested unconfined strengths ranging from 2.6 to 3.8 tons per square foot.

<u>CLAYSTONE</u>: Claystone bedrock was encountered in all borings at various depths throughout the bedrock materials and varied from slightly to highly weathered. The claystone was typically described in the field as moderately plastic; one Atterberg limits test run on claystone resulted in a liquid limit of 40 percent and plasticity index of 25 percent and had relatively high sand content, up to 35.9 percent sand in the one tested sample. One-dimensional swell-consolidation tests were run on 2 claystone samples and exhibited swell potentials of 3.4 percent under a 500 psf surcharge pressure and 1.2 percent under a 1000 psf surcharge pressure. Laboratory unconfined compressive strength performed on one sample of slightly weathered claystone resulted in a strength of 8.2 tons per square foot. One flexible wall permeability test run on claystone bedrock and resulted in a hydraulic conductivity of approximately 2.8 X 10⁻⁷ (cm/s).

3.3. GROUNDWATER OBSERVATION

Water levels were observed and recorded at the boring locations during drilling and immediately upon completion. Water was encountered in 8 of the 12 borings, with water levels varying from approximately 7.0 to 30.0 feet bgs. The depths to water in the borings are shown in the respective boring logs and summarized in *Table 3.1*. The boring elevations were interpolated from the Draft Topographic prepared by Flatirons, Inc. and dated July 8, 2020. The elevations provided below should be considered approximate.

	During Drilling		Immediately	After Drilling
Boring No.	Depth (bgs, feet)	Approximate Elevation (feet)	Depth (bgs, feet)	Approximate Elevation (feet)
B-1	Not encountered	Not encountered	Not encountered	Not encountered
B-2	17.0	5328.5	34.2	5311.3
B-3	34.0	5306.0	Not encountered	Not encountered
B-4	34.0	5308.5	33.5	5309.0
B-5	40.0	5310.5	38.6	5311.9
B-6	40.0	5312.0	47.6	5304.4
B-7	19.0	5334.0	33.7	5319.3
B-8	36.4	5320.1	47.4	5309.1
B-9	35.0	5325.0	34.6	5325.4
B-10	Not encountered	Not encountered	Not encountered	Not encountered
B-11	Not encountered	Not encountered	Not encountered	Not encountered
B-12	Not encountered	Not encountered	Not encountered	Not encountered

Table 3.1: Groundwater Levels – Observations During and Immediately After Drilling

Note: Elevations were interpolated from the draft Topographic Exhibit dated July 8, 2020.

During our investigation, three monitoring wells (piezometers) were installed to depths of 50 feet at boring locations B-1, B-6, and B-12 to allow for periodic long-term monitoring of the groundwater levels across the project site. The monitoring wells were installed with a 20-feet screen from approximately 30 to 50 feet bgs and solid riser pipe extending to the ground surface. Based on the water level elevations encountered during our exploration and our understanding of the subsurface materials encountered within our borings, it appears that groundwater is generally encountered either within sandy claystone lenes or within interbedded sandstone layers. At the time of this report, one reading had been taken approximately a week following installation of the piezometers. Seasonal groundwater measurements are planned through summer 2021. The depths and approximate elevations observed are summarized in Table 3.2.

Boring No.	Date of Measurement	Approximate Ground Surface Elevation (feet)	Depth to Groundwater (bgs, feet)	Approximate Elevation of Groundwater (feet)
B-1	8/31/2020	5334.0	12.4	5321.6
B-6	8/31/2020	5352.0	17.4	5334.6
B-12	8/31/2020	5373.0	21.4	5351.6

Table 3.2: Groundwater	Levels – Monitoring	Well Observations
	Eoroio monitoring	

Note: Elevations were interpolated from the draft Topographic Exhibit dated July 8, 2020.

Based on the water level elevations encountered variations and uncertainties exist with the relatively short-term water levels observed and recorded during this exploration and in the monitoring wells to date. Water levels can and should be anticipated to vary between boring locations as well as with time within a specific boring. Water also tends to be present near the soil and bedrock interface and can flow through joints in the bedrock. Groundwater levels may be expected to fluctuate with precipitation, site grading, drainage and adjacent land use. **Excavations that extend below the water elevation will need to be adequately dewatered for proper subgrade preparation and other construction activities**.

4. GEOTECHNICAL CONSIDERATIONS

4.1. EXPANSIVE SOILS AND BEDROCK

The onsite soils selected for swell potential testing were determined to have moderate to high swell potential based on the laboratory one dimensional swell/consolidation tests and bedrock materials exhibit low to moderate swell potential. The resulting magnitude of volume change for these expansive materials depends on various factors including soil composition, in-situ moisture content, in-situ density, and the change in moisture content. The test results are summarized in the table below:

Test/Sample		In-situ	In-situ dry	Inundation	Percentage	Swell
Location	Material	moisture	density	Pressure	swell	pressure
Looation		(%)	(pcf)	(psf)	(%)	(psf)
B-3 @ 3.5'	Fat clay with sand	15.2	103.9	500	3.16	5,200
B-3 @ 9.0'	Claystone	22.9	99.6	1,000	1.21	4,200
B-6 @ 3.5'	Lean clay with sand	10.0	110.1	500	2.13	3,500
B-7 @ 1.0'	Lean to fat clay with sand	12.9	115.3	150	6.15	6,900
B-7 @ 6.0'	Claystone	17.0	104.9	500	3.41	7,000

Table 4.1: Summary of expansion potential based on one-dimensional consolidation/swell tests

Based on an assessment of slab performance risk at the site, conducted in general conformance with local industry guidelines (CAGE, 1996), it is our opinion that moderate to potentially high slab performance risk exists at the site. Slab-on-grade movements of 2.25 to 3.4 or more inches, were calculated for various assumed depths-of-wetting. Slab movements of that magnitude could result in associated slab cracking on the order of 1/4-inch width or more for slabs constructed directly on the native clays and claystone. Further, the laboratory swell pressures all exceed the anticipated shallow foundations loads which could lead to intolerable movements and distress to foundations elements constructed directly on the expansive soils and/or rock at the site. Therefore, we recommend subgrade mitigation at the proposed foundation footprints, and critical floor slabs, as discussed in *Section 6* This will be especially important for basins or other structures which will be required to contain fluids on poured concrete slabs.

To reduce soil movement due to swell and to provide uniform support below pavements, overexcavation of the in-situ soil or bedrock underlying pavements is recommended as discussed in *Section 7.1*. Overexcavated soils or bedrock should be backfilled or replaced with controlled structural fill per *Section 5.2*.

4.2. GROUNDWATER

At the time of **Olsson's** exploration, groundwater was encountered in eight of the twelve borings at depths ranging from approximately 17.0 feet to 47.6 feet. When checked approximately a week after drilling, the water levels were measured from 12.4 to 21.4 feet within the piezometers (B-1, B-6, and B-12). At these depths, groundwater or saturated soil conditions may impact site grading and earthwork operations if cuts on the order of 10 to 20 feet are required to level the site or construct ponds or basins. Groundwater may also be encountered during utility and/or below grade structure installation. Excavations that extend below the water elevation will need to be adequately dewatered for proper subgrade preparation. The design, operation, and maintenance of the dewatering system during construction is the responsibility of the contractor. Additionally, perimeter underdrain systems are recommended for buildings and tanks to protect below grade foundations and reduce potential settlement of fill materials.

4.3. DEPTH OF WETTING

The client should understand that some potential risk of movement exists for the use of shallow foundations on sites underlain by soils and bedrock with swelling potential within the depth of wetting zone. The depth of wetting will also dictate the recommended length of deep foundations. Several factors can affect the depth of wetting which can vary from site to site. There is no absolute method to determine the depth of wetting however, Walsh et. al (2009) provide a probability study for the depth of wetting in the Denver metropolitan area. Their findings are presented in the table below.

Assumed Depth of Wetting (Feet bgs)	Probability that the Actual Depth of Wetting will Exceed the Assumed Depth of Wetting
15 feet	60%
20 feet	30%
25 feet	6%
30 feet	1%
35 feet	0.1%

The amount of potential heave is dependent on the depth of wetting. Estimated heave amounts will increase as the depth of wetting increases. It is our opinion that an assumed depth of wetting of 25 feet is appropriate for this site. However, to further reduce potential risk, the assumed depth of wetting could be increased.

5. SITE PREPARATION

5.1. GENERAL SITE AND SUBGRADE PREPARATION

All topsoil, vegetation, major root systems, organic soils, and any loose, soft, or otherwise unsuitable or deleterious material should be stripped and removed from the entire construction area. These materials should be carefully separated to avoid incorporation into structural fill. Based on our observations in the borings, the topsoil/root zone where present was approximately 3 to 6 inches thick across the site; however, the contractor should be prepared for areas with deeper root zones across the project site.

Site clearing, grubbing, and stripping should be completed during periods of dry weather. Operating heavy equipment on the site during periods of wet weather could result in excessive pumping and rutting of the subgrade soils.

As previously discussed, the site is currently inhabited with a large population of prairie dogs. To reduce potential settlement of the proposed structures due to burrow collapse, the prairie dog tunnels should be excavated and thoroughly compacted during construction.

The results of the geotechnical exploration indicate shallow bedrock consisting of weak sedimentary rock (claystone and sandstone). Conventional excavation machines are anticipated to be suitable for excavation of most of the foundations; however, heavy excavation equipment may be needed for areas of planned deep excavations or where hard cemented sandstone is encountered. The contractor should review the boring logs included in *Appendix B* to determine where heavy equipment may be necessary based on materials and SPT "N" values

After grubbing, stripping, demolition, site grading, and any required excavation, but prior to placement of structures, pavements, or fill in areas below design grade, the exposed soil subgrades should be prepared by scarifying, moisture conditioning and recompacting at least the upper 12 inches of exposed surface as recommended in *Table 5.1*. If excavations or site grading exposes bedrock materials, these materials should be surface compacted using a fully weighted smooth drum roller to confirm the stability of the bedrock surface. Any localized zones of soft materials should be excavated and replaced with approved structural fill as recommended in *Section 5.2*. At the time of placement, the areas to receive fill should not be frozen and any ice, snow, or standing water should be removed. The use of a smooth cutting edge on the excavation bucket will help reduce subgrade disturbance at the base of foundation trenches.

Options and considerations for overexcavation of the different project elements, including shallow foundations, mat foundations, slabs-on-grade, and pavements, are discussed in *Sections 6* and 7 of this report. These recommendations are based on the subsurface information available as part of our preliminary field investigation and may be revised following the final geotechnical engineering investigation later in the design process. Overexcavated areas should be backfilled with controlled and engineer approved structural fill, in accordance with *Section 5.2* of this report. In addition, following moisture treatment and compaction the prepared subgrade should be proofrolled with a fully loaded, tandem-axle dump truck or other wheeled equipment with minimum gross weight of 20 tons, wherever access for the equipment is feasible. Proofrolling aids in delineating soft or loose areas that may exist below subgrade level. Unsuitable areas identified by visual observation or proofrolling should be improved by compaction in-place or by overexcavation and replacement of the unstable soil with compacted structural fill.

We recommend an **Olsson** geotechnical engineer, or their authorized representative, evaluate the base of new construction excavations prior to the placement of any new fill soils or pavements. We further recommend that an **Olsson** representative be on-site to observe and document uniform and stable subgrade conditions prior to placing new structural fill, structures, or pavement.

5.2. STRUCTURAL FILL

The on-site lean clays are suitable for reuse as structural fill provided the higher plasticity soils are blended with lower plasticity soils such that their resulting liquid limit is less than 45, plasticity index less than 20, and have a swell potential that is less than 1% under an inundation pressure of 500 psf. Laboratory plasticity and swell documentation of blended materials should be provided to *Olsson* for review and approval prior to placement. Excavated claystone bedrock materials are not suitable for reuse as structural fill and should be removed from the site. Excavated sandstone may be reused as fill provided the material is free of claystone fragments and processed to have a maximum particle size of 3 inches.

During excavation, we recommend that apparent fat clay materials be separated and stockpiled away from apparent lean clay materials. A geotechnical engineer or geologist from **Olsson** should be onsite during excavation to visually classify excavated materials and collect samples for laboratory testing to confirm the field classifications.

Fat clays are not appropriate for use as structural fills or as retaining wall backfill but may be placed as general site landscaping fill in areas that are not intended for future facility expansions.

Imported fill materials, if required, should be low plasticity, cohesive acting, non-expansive, sandy clays or clayey sands with a liquid limit less than 45, a plasticity index less than 20, have at least 25 percent <u>passing</u> the #200 sieve, and have a swell potential that is less than 1% under an inundation pressure of 500 psf. If alternate borrow materials are considered, we recommend the contractor provide supplier gradation and/or laboratory plasticity and remolded swell documentation to **Olsson** for review and approval prior to site delivery. **Olsson** should be onsite to provide regular monitoring of either import or blended materials during earthwork activities to document consistency with the soil parameters recommended in this report. The figure below provides preliminary boundaries assumptions for where lean clays verses fat clay sufficial materials may be encountered. The boundaries were estimated based on the materials encountered within **Olsson's** widely spaced boring locations. We categorized lean-to-fat clays with moderate or higher swell potential as fat clays for the purpose of our structural fill recommendations. These areas are subject to change following the final investigation and other inter-boring location variability may also be encountered. A more detailed surficial zone plan is provided in *Appendix D*.

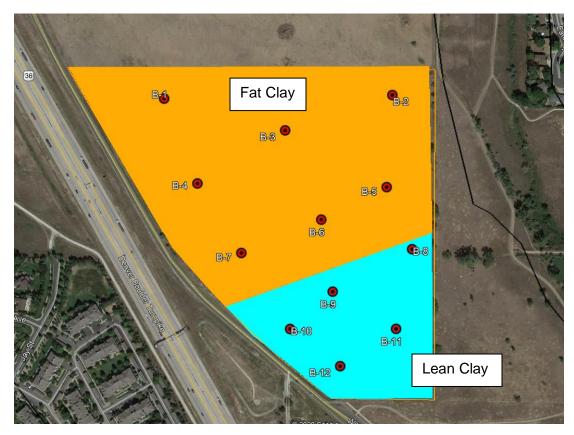


Figure 5.1: Approximate Preliminary Lean Clay vs Fat Clay Boundaries

All structural fill soils should be free of debris, organics, and other unsuitable materials, and should not be frozen or include ice at the time of placement.

New fill should be placed in maximum loose lift thicknesses of 8 inches and compacted as recommended in *Table 5.1*. The lift thicknesses should be limited to 4 inches when compacting in small areas requiring hand-operated equipment such as vibrating plate compactors, walk behind trench rollers, or jumping jacks.

An **Olsson** representative should be on site full time throughout placement of fill materials to observe and monitor the excavation and grading operations and perform field density tests to document that recommended moisture and compaction requirements are being achieved.

Areas of Fill Placement	Material	Minimum Compaction Recommendation	Moisture Content (% of Optimum)
General subgrade preparation, overexcavation backfill underlying pavements, and trench backfill	Onsite excavated or imported low plasticity predominantly sandy soils (SC, SC/SM)	95% Standard Proctor (ASTM D698)	-2 to +2 percent
	Onsite excavated, onsite blended, or imported low plasticity, non- expansive, cohesive predominantly clay soils (CL, CL/ML)	95% Standard Proctor (ASTM D698)	-1 to +3 percent
Overexcavation backfill or site fill underlying structures	Onsite excavated or imported low plasticity predominantly sandy soils (SC, SC/SM)	98% Standard Proctor (ASTM D698)	-2 to +2 percent
	Onsite excavated, onsite blended, or imported low plasticity, non- expansive, cohesive predominantly clay soils (CL, CL/ML)	98% Standard Proctor (ASTM D698)	-1 to +3 percent
Immediately below floor slabs	Non-cohesive granular fills (No. 57 stone meeting ASTM C-33 specifications)	95% Standard Proctor (ASTM D698)	Necessary Moisture Content to reach compaction

Table 5.1: Fill Placement Guidelines

CDM Smith – Westminster Water 2025 Preliminary Design Project

Olsson Project No. 019-1378

March 4, 2021

Areas of Fill Placement	Material	Minimum Compaction Recommendation	Moisture Content (% of Optimum)	
Aggregate Base Course	Non-cohesive granular fills (CDOT Class 6 material)	95% Modified Proctor (ASTM D1557)	-2 to +2 percent	
Utility trench	Granular bedding	95% Standard Proctor (ASTM D698)	Necessary moisture content to reach compaction	

The moisture content for the structural fill at the time of compaction should generally be maintained between the ranges specified above. More stringent moisture limits may be necessary with certain soils and some adjustments to moisture contents may be necessary to achieve compaction in accordance with project specifications.

5.3. DRAINAGE CONSIDERATIONS

The long-term performance of the structures is dependent on reducing or eliminating moisture infiltration into the subgrade materials. Water should not be allowed to collect at the ground surfaces near foundations, critical project elements, or areas of new pavement, either during or after construction. Provisions should be made to quickly remove accumulating seepage water or storm water runoff from excavations. Undercut or excavated areas should be sloped toward one corner to allow rainwater or surface runoff to be quickly collected and gravity drained or pumped from construction areas. Subgrade soils that are exposed to precipitation or runoff should be evaluated by **Olsson** prior to the placement of new fill, reinforcing steel, or concrete to determine if corrective action is required.

To minimize concerns related to improper or inadequate drainage away from foundation bearing subgrades or from cohesive backfill materials used in utility trenches, we recommend the following:

- Provide for efficient drainage of rainfall or surface runoff away from new structures. Water should not be allowed to pond near foundation elements.
- Underdrain systems are recommended for below grade construction to help protect and prevent hydrostatic pressure buildup of foundation walls and to reduce the potential settlement of fill materials. Underdrains should be installed around all building foundation systems and tank foundation systems to collect water runoff and redirect moisture away from areas of structural fill. Moisture should be gravity drained to daylight or collected in

Olsson Project No. 019-1378

a sump and pump system, the drain outlet should be directed away from the foundation area and discharged well beyond the limits of the backfill zone.

- In addition, as a part of structure maintenance, we recommend that the finished grade slopes be periodically inspected and reestablished, as necessary.
- Depending on the depths of excavations and foundations, a permanent dewatering system may need to be considered. Site grading was not available at the time of this report. Further discussion of potential dewatering concerns based on the groundwater table should be included in the final geotechnical engineering report following development of a site grading plan and completion of additional monitoring well water level observations.
- Any drainage swales or outlets should be located at least 10 feet away from any foundation elements or other critical structures.
- Roof run-off should be collected and discharged directly to the storm sewer system or directed to a location with positive and rapid drainage away from new structures and well beyond the foundation backfill extents.
- External hose connections in unpaved areas should incorporate splash blocks to prevent accidental flooding of foundation bearing or backfill soils. External hose connections should have cut-off valves inside the building to prevent accidental or unauthorized use.
- Site grading should provide for efficient drainage of rainfall or surface runoff away from new structures and pavements.
- Pavement run-off should be collected and discharged directly to the storm sewer system or directed to a location with positive and rapid drainage away from new structures and pavements.
- Landscape irrigation amounts could be reduced with the use of xeriscaping. Xeriscape rather than traditional landscaping is recommended near buildings and other critical structures.

5.4. TEMPORARY SLOPES AND EXCAVATIONS

Construction site safety is the responsibility of the general contractor. The contractor shall also be solely responsible for the means, methods, techniques, sequencing, and operations during construction. *Olsson* is providing the following information solely as a service to our client. Under no circumstances should *Olsson*'s provision of the following information be construed to mean that we are assuming responsibility for construction site safety or the contractor's activities. Such responsibility is not implied and should not be inferred.

The contractor should be aware that slope height, slope inclination, and excavation depths (including utility trench excavations) should in no case exceed those specified in local, state, or federal safety regulation; e.g., OSHA Health and Safety Standards for Excavations, 29 CFR

Part 1926, or successor regulations. Such regulations are strictly enforced and, if not followed, the owner, contractor, or earthwork or utility subcontractor could be liable for substantial penalties.

Temporary slopes exceeding 5H:1V should be properly benched prior to placement of new fill to reduce the potential for slippage between existing slopes and fills. Benches should be wide enough to accommodate compaction and earth moving equipment, and to allow placement of horizontal lifts of fill. As an alternative to flatter and benched temporary slopes, vertical excavations can be temporarily shored. The contractor should be responsible for the design of temporary shoring in accordance with applicable regulatory requirements.

Permanent fill and cut slopes at the site should not exceed 3H:1V. Where steeper slopes are planned, additional analysis should be performed once grading plans have been developed.

If excavations, including utility trenches, are extended to depths of more than 20 feet, OSHA requires that the side slopes of such excavations be designed by a professional engineer registered in the state where construction is occurring. Utility trench shoring may also be necessary in areas constrained by existing structures or infrastructure. **Olsson** is available to provide supplemental design recommendations for shoring systems.

5.5. UTILITIES

We recommend the subgrade supporting utility pipes should be prepared as recommended in *Section 5.1*. Granular pipe bedding is acceptable and should be placed over the prepared subgrade and compacted per *Section 5.2*. In accordance with the City of Westminster, utility trench backfill material shall be deposited in uniform horizontal layers which may not exceed six inches (6") (compacted depth). The remaining trench should be backfilled using the soils originally removed from the trench excavations as long as these soils meet the structural fill requirements and have a compatible gradation with the granular bedding material below such that this backfill does not migrate into the granular material causing unexpected settlement. On the other hand, if the gradation of this backfill is not compatible, we recommend a separating fabric be installed between the granular bedding material below and this backfill. The trenches should be backfilled with properly compacted structural fill placed in accordance with *Section 5.2* of this report. In places where proper compaction of the backfill cannot be achieved, the utility trenches should be backfilled with flowable fill or controlled low-strength materials (CLSM) and the material should completely surround the utility line.

To restrict water infiltration into the trenches, the utility trenches not covered with pavement or concrete flatwork should be capped with at least 1 foot of low permeability clay soils extending

at least 3 feet outside of the perimeter of the trench. In addition, where utilities will penetrate the footprint of the building, it is recommended that a utility trench "plug" be constructed around the utilities that extends at least 5 feet beyond the perimeter of the structure. The trench plug should consist of non-expansive cohesive backfill materials having at least 50 percent passing the #200 sieve, to provide a moisture barrier within the influence zone of the new structure. Further flexible utility connections should be considered where possible and openings within foundation walls should be oversized by a couple inches.

Water should be prevented from entering utility trenches before and during construction. While in service, the utility designer should consider the potential impact of groundwater on the utilities depending on its depth. Extended excavations should not remain open if rain and/or snow is anticipated. Excavations should be backfilled as soon as possible with approved structural fill to reduce the potential for moisture infiltration or sidewall sloughing. Depending on the final planned pipe elevations, consideration of an underdrain system may be warranted.

We understand that both raw and treated water pipes are planned throughout the distribution system as part of the City of Westminster's 2025 Process Plans. The above discussion and the recommendations in this report do not address any utilities planned outside the bounds of the water treatment facility project area. Separate investigation(s) should be performed to develop design and construction recommendations for pipelines throughout the distribution network.

5.6. CONSTRUCTION EQUIPMENT MOBILITY

The onsite subgrade soils consisting of significant amounts of clay are anticipated to be susceptible to degradation under repeated construction equipment traffic and may be unstable and cause excessive pumping and rutting when exposed to high moisture levels under repeated traffic loads. Therefore, necessary precautions should be made to avoid excessive degradation of the subgrade soils, including use of lightly loaded track mounted equipment in lieu of heavy rubber-tired equipment. Temporary stabilization techniques may be required depending on severity of the degradation or weather conditions.

Some general guidelines for reducing equipment mobility problems and addressing potential soft and wet surface soils are as follows:

- Optimize surface water drainage at the site during construction.
- Whenever possible, wait for dry weather conditions to prevail, and do not operate construction equipment on the site during wet conditions. Temporarily recompact loose subgrade soils if rain is forecast to promote site drainage and reduce moisture

Olsson Project No. 019-1378

infiltration. Ruts caused by construction vehicle traffic will accelerate subgrade disturbance.

- Disc or scarify wet surface soils during periods of favorable weather to accelerate drying.
- Use construction equipment that is well suited for the intended job under the existing site conditions. Heavy rubber-tired equipment typically requires better site conditions than lightly loaded track-mounted equipment.

It may be necessary to take steps to aggressively improve equipment mobility if construction must proceed during unfavorable conditions. In our experience, sheepsfoot rollers are likely the best suited compaction equipment based on the subsurface materials encountered.

6. STRUCTURES

We understand that design of the facility is currently underway and in preliminary stages. A range of expected structural loads has been provided to **Olsson** by CDM Smith, as noted in *Section 1.3*; however, grading plans and final maximum structural loads were not available at the time of this report. The discussions below presents a range of options for consideration by the project team which may further be refined in the final geotechnical engineering report.

6.1. Shallow Foundation Design

Provided the subsurface modifications in this section are followed, the site appears suitable for supporting the facility structural loads on conventional shallow spread or trench type foundations. As previously discussed in *Section 4*, moderate to high swell potentials were encountered in subsurface soils across the site in the clay soils and claystone bedrock. To reduce potential movement due to soils with moderate to high swell potential, we have provided the following options for overexcavation and support of the footings.

<u>Shallow Foundation Option 1</u>: Footings will be supported by a minimum 6 feet of approved structural fill, placed in accordance with *Section 5.2*, either by overexcavating and replacing the native materials or by raising the existing site grade. Prior to placement of structural fill, the exposed soil or bedrock materials should be prepared per *Section 5.1*.

<u>Shallow Foundation Option 2</u>: Foundations with minimum dead loads supported on a minimum 3 feet of approved structural fill, placed in accordance with *Section 5.2*. We recommend that the footing foundations be designed for a minimum loading of at least 1/3 of the final allowable net bearing pressure to resist some of the uplift due to potential swelling. If there are difficulties attaining the recommended minimum loads, an isolated perimeter pad foundation may be considered. The minimum void height below the foundation stem wall and between isolated perimeter pads has not been estimated at this time due to various project unknows however, based on our preliminary subsurface information we anticipate voids of approximately 3 to 5 inches will be required. The structural fill depths may be accomplished either by overexcavating and replacing the native materials with approved structural fill or by raising the existing site grade with approved structural fill. Prior to placement of structural fill, the exposed soil or bedrock materials should be prepared per *Section 5.1*. Extra caution during construction should be taken to ensure that void cartons are not punctured and filled with concrete, if this occurs the damaged cartons should not be allowed to remain in place and should be replaced.

Depending upon final building elevations, foundation depths, and quantity of cut and fill, the net allowable soil pressure may vary significantly. Based on our limited field exploration, we

anticipate a maximum allowable net bearing pressure on the order of approximately 3,000 to 4,000 pounds per square foot (psf) for a shallow foundation system bearing on structural fill placed to the depths recommended in this section and placed in accordance with *Sections 5.1 and 5.2*. The net allowable bearing capacity can be increased by 1/3 for transient loadings (short term loading such as wind load or seismic load) when used with the alternative basic load combinations of Section 1605.3.2 of IBC 2015.

Total and differential settlement amounts were not estimated at this time due to the variability of loads, subgrade soils, and footings depths and should be evaluated during the final geotechnical investigation and report. Differential settlement on the order of 1-inch total and 0.5-inches differential is generally tolerable for typical structures. Based on the soils encountered, it is anticipated that these settlement limits can be achieved with shallow spread foundations at this site, however, it should be noted that the anticipated allowable net bearing pressures indicated above may need to be modified if settlement controls the design.

For either option, building footings should have minimum dimensions in accordance with local building codes. *Olsson* recommends minimum dimensions of 18 inches for continuous footings and 24 inches for isolated column footings to minimize the potential for localized bearing failure. Perimeter footings and footings in unheated areas should bear at a minimum depth of 36 inches below the lowest adjacent final ground surface for frost protection per City of Westminster requirements. Interior footings in heated areas can bear as shallow as 12 inches below the floor slab.

The use of the recommended design bearing pressure is contingent on having prepared foundation subgrades observed by an *Olsson* geotechnical engineer or their authorized field representative prior to placing new structural fill, reinforcing steel, or concrete to document that the subgrade soils and conditions are consistent with the bearing subgrade requirements of this report. Additionally, we recommend bearing subgrades be proofrolled or hand probed before placing reinforcing steel or concrete to identify soft, loose, or otherwise unsuitable conditions. Proofrolling should be performed using a fully loaded, tandem-axle dump truck or other wheeled equipment with minimum gross weight of 20 tons wherever access for the equipment is feasible.

Lateral resistance of the foundation will be achieved through a combination of base shear resistance mobilized at the footing-subgrade interface and passive earth pressure acting on the vertical faces of the footings at right angles to the direction of applied load. A friction coefficient value of 0.4 can be used between the structural fill and the foundation concrete for base shear and sliding resistance. Passive earth pressure resistance within the frost penetration depths should be ignored. If foundations are extended below frost penetration depths, lateral resistance

for foundations extending below frost depth can be calculated using a drained nominal passive equivalent fluid pressures provided in *Section 6.5*. The design engineer should select the appropriate lateral pressures based on the material and groundwater conditions encountered. The design engineer should also use a suitable factor of safety. For foundations that extend below the water table, buoyant forces should be considered for foundation design.

6.2. DEEP FOUNDATIONS

Deep foundation systems are another suitable option for supporting facility structural loads across the project site. During drilling in our preliminary investigation, the borings appeared to remain open while drilling and immediately upon completion of drilling. While we do not anticipate sidewall sloughing during drilled shaft construction, it is likely shafts, if used, will extend below the water table. We recommend that the installation contractor review this report and the final geotechnical report, when published, to evaluate the soils encountered and select their means and methods for drilled shaft installation accordingly.

If designing lateral capacity of drilled shaft foundations using LPILE (by Ensoft Inc.) or similar programs, the following parameters are applicable for this project site. The design parameters are based on the results of our laboratory testing program and information obtained from the preliminary geotechnical borings. Depths and properties shown in the table below represent general parameters for the different encountered materials within ranges of depth. Specific preliminary design values for the structures should use the values below in combination with the boring logs in *Appendix B* to evaluate capacities at each specific boring location. Deep foundation design parameters should be verified for each individual structure during the final geotechnical engineering report if a deep foundation system is desired.

Olsson Project No. 019-1378

Soil Type	Approximate Formation Depths (ft)	Moist Unit Weight (pcf)	Ultimate Skin Friction (psf) ^{3,4}	Ultimate End Bearing (psf) ³	Cohesion/ Friction Angle	Soil Modulus k _h (pci)	Strain Factor E50
CL (Frost)	0 – 3	110	Ignore	Ignore	Ignore	Ignore	Ignore
CL, CL/CH, CH ¹	3 – 10	120	-225	N/R	1,500 psf	Static – 500 Cyclic – 200	0.007
SC	5 – 10	120	Ignore	N/R	32 degrees	Static – 90 Cyclic – N/A	N/A
Upper Sandstone ²	6 – 25	125	400	N/R	35 degrees	Static – 125 Cyclic – N/A	N/A
Upper Claystone ¹	6 – DOW ⁵	120	-700	N/R	4,000 psf	Static – 2000 Cyclic – 800	0.004
Lower Sandstone ²	25 – 50	125	600	50,000	40 degrees	Static – 125 Cyclic – N/A	N/A
Lower Claystone ¹	DOW ⁵ - 50	120	2,000	25,000	4,000 psf	Static – 2000 Cyclic – 800	0.004

Table 6.1. Preliminary Design Parameters for Deep Foundations

¹ Clay soils with cohesion more than 1,000 psf should be modeled as "Stiff Clay with Free Water (Reese)". ² Sandy soils should be modeled as "Sand (Reese)".

³ These are ultimate or nominal values and do not include any factor of safety or resistance factors. When using allowable stress design method, we recommend using a minimum factor of safety 3 for end bearing and 2.5 for side friction against axial resistance with 3/4th of the allowable skin friction for uplift resistance.

⁴ The upper 10 feet of the shafts should be cased, and skin friction should be ignored within the seasonal zone of moisture variation. Negative values indicate uplift pressure due to swell of claystone materials, as directed by CAGE (1999).

⁵ DOW is the assumed depth of wetting, as discussed in Section 4.3.

N/A = Not Applicable; N/R = Not Recommended

For the values above to be valid, the following considerations should be included in the design:

- The values above assume that proper drainage is provided around the foundations to avoid moisture changes in the subgrade soils.
- Friction should be ignored within the seasonal zone of moisture variation; however, negative skin friction or uplift should still be considered.
- Permanent sleeves or casing within the seasonal zone of moisture variation or deeper may be considered as an option to reduce negative skin frictions due to swelling.
- Olsson recommends that drilled shaft foundations be a minimum of 18 inches in diameter and be designed in accordance with the soil parameters provided above. It is our opinion that the overturning moment will be the controlling loading condition and as such will govern the total depth of the shaft; however, the shaft should be embedded at least 2 feet or 1 diameter into competent bedrock to achieve the ultimate end bearing

value associated with the bedrock as shown in Table 6.1. The final shaft diameter and tip depth should be provided by the structural engineer based on their review of this report, the final geotechnical engineering report, the final grading plan, and the soil conditions encountered at the time of installation.

- The drilled shafts should extend a minimum of 5 feet beyond the assumed depth of wetting, or deeper as necessary to counter act pier uplift
- An uplift capacity of 75 percent of the allowable skin friction can be used in combination with the overall pile weight for the design of a steel reinforced pile to resist uplift loads. The structural capacity of the piles should be determined using applicable local building codes.
- Drilled shafts required to resist uplift forces must be reinforced over their entire length. It is common for drilled shaft foundations to be designed with sufficient reinforcing steel to accommodate incidental bending moments and transient lateral loads.
- The contractor should be prepared for drilling with temporary casings if required. Where temporary casings are used, the casing should be extracted at a slow, uniform rate, with the pull in line with the center of the shaft. Where groundwater is encountered, concrete should be brought up at least to the external level of groundwater before any casing lifting commences to prevent infiltration of water, caving soils, or creation of voids in shaft concrete.
- Groundwater was encountered up to a depth of approximately 12.4 feet below the existing ground surface. If water is encountered during drilling it should be removed or prevented from entering the hole with temporary casing and/or dewatering equipment prior to placement of concrete, the tremie method should be used after the hole has been cleared. Concrete should not be placed in more than 3 inches of water unless placed through an approved tremie method.
- Construction specifications for drilled shafts should include a concrete mix designed to limit bleeding of installed shafts and the pile contractor's responsibility to increase individual or group shaft lengths, the installation of additional shafts to compensate for any soil disturbance created by the contractor's means and methods during construction. The concrete or grout mix, at a minimum, should be designed to sufficient strength to support the structures.
- An **Olsson** field technician should be on-site to observe the shafts as they are drilled and during concrete and reinforcing steel placement.
- The base of the drilled shaft boring should be clean and free of debris or loose soil prior to placing concrete or reinforcing steel. Concrete for the drilled shaft foundation should be placed promptly to reduce exposing the subsoil to rain, surface runoff, or drying conditions. If foundation bearing soils are subjected to such conditions, the soils should be reevaluated by *Olsson* prior to reinforcing steel or concrete placement.

Olsson Project No. 019-1378

- We recommend that concrete for drilled shaft foundations have a slump of 5 to 7 inches at the time of placement.
- Free-fall concrete placement is not recommended unless approved by the structural engineer. The use of a bottom dump hopper or tremie pipe could be considered to prevent potential aggregate segregation or sidewall disturbance.

6.3. **BUILDING FLOOR SLABS**

Due to the documented swell of the native soils, we have provided two options for building floor slabs for consideration by the project team.

<u>Floor Slab Option 1</u>: Structural slab or slab-on-void with at least 4 inches of void space between the bottom of slab and final subgrade surface. The slab loading will be transferred directly to the shallow or deep foundation system and suspended above the subgrade soils which allows the soils to swell within the void space below the slab. Void spaces could be established with cardboard void boxes (such as SureVoid® or similar) or by constructing a crawlspace. Soils below the voided floor slab system that are not supporting or in contact with the building elements do not need to be excavated and replaced, or moisture treated. However, the surface should be sloped to drain and surface compacted to reduce moisture infiltration. Structural design of the structural slab or slab-on-void should be completed by the project structural engineer.

<u>Floor Slab Option 2</u>: Slab-on-grade floors supported by a minimum 6 feet of approved structural fill, placed in accordance with *Section 5.2*, either by overexcavating and replacing the native materials or by raising the existing site grade. Prior to placement of structural fill, the exposed soil or bedrock materials should be prepared per *Section 5.1*. Additionally, the floor slab subgrade should be evaluated by proofrolling (if feasible) with an *Olsson* representative present, during the site grading or earthwork stages prior to placement of crushed rock, reinforcing steel, or concrete. If unstable soils are encountered which cannot be adequately densified in place, these soils should be removed and replaced with structural fill in accordance with the recommendations of this report. A minimum of 4 inches of clean, crushed rock similar to No. 57 stone should be placed directly underlying concrete slab in order to provide a capillary break and leveling surface. The stone should be compacted as discussed in *Section 5.2*.

If the recommendations of Option 2 are followed and the subgrade soils are prepared and compacted as recommended, the building floor slab may be designed using a subgrade modulus (" k_v " value) of 100 psi/in.

Interior partition walls should not be supported directly on the slab on grade floor, and instead should be supported by the building super-structure and a void space should be left between the bottom of the wall and slab-on-grade surface. This separation will allow any minor movement of the slab and prevent damage to interior finishes.

It may be appropriate to provide a sealed polyethylene vapor barrier between the new floor slab and granular drainage materials to reduce moisture infiltration. The decision to place a vapor barrier in direct contact with the slab or beneath the layer of granular fill should be made by the design engineer after considering the moisture sensitivity of new flooring materials or finishes and installed per the current American Concrete Institute standards and recommendations. Because the long-term performance of the slab-on-grade will greatly depend on the minimizing moisture variations in the subgrade soils, the recommendations provided in *Section 5.3* should be followed.

6.4. MAT FOUNDATIONS

If desired for the treatment ponds or water storage tank(s), the subsurface conditions appear suitable for supporting proposed facility elements on a mat foundation system provided recommendations in this preliminary report are followed and verification of these design parameters is included in the final geotechnical engineering report.

Mat foundations should be founded on a minimum of 4 feet of structural fill placed in accordance with *Section 5.2*, either by overexcavating and replacing the native materials or by raising the existing site grade. Prior to placement of structural fill, the exposed soil or bedrock materials should be prepared per *Section 5.1*. The mat should be designed to uniformly distribute the applied building loads across the entire mat foundation. The mat foundation should be designed for a maximum net allowable soil bearing pressure of approximately 2,000 to 3,000 psf.

Mat foundations tend to experience more settlement than lightly loaded isolated foundations due to the larger influence zone associated with mat foundation. However, mat-type foundation systems tie the multiple structure elements together in one reinforced concrete mat which will typically reduce the differential settlement potential across the structural pad.

If the structural designer would prefer this design using this methodology, **Olsson** should be contacted for additional recommendations and these recommendations should be verified as part of the final geotechnical engineering report.

6.5. LATERAL EARTH PRESSURES

Below grade walls should be designed utilizing the lateral earth pressures provided in this section. The parameters below are based on the understanding that the retained soils will be similar in composition to the on-site soils encountered during this exploration.

Site retaining wall foundations should extend to below frost depth and should be founded on at least 3 feet of structural fill placed in accordance with *Sections 5.1 and 5.2*. Retaining wall foundations should be designed for a maximum net allowable soil bearing pressure of approximately 2,000 to 3,000 psf.

The "at-rest" condition assumes no wall rotation or deflection and would be applicable for walls which are rigidly restrained at the top, such as basement walls. Walls that are not restrained at the top and are free to deflect or rotate slightly may be designed for "active" earth pressure conditions. The "passive" earth pressure condition should be used to evaluate the resistance of soil to lateral loads. The table below presents recommended values of earth pressure coefficients and equivalent fluid density. The drained condition values provided assume that positive drainage is present to prevent hydrostatic forces from developing behind the wall.

	Earth Pressure Coefficient		Equivalent Fluid Density*		
Condition			Moist Condition	Saturated Condition**	
Active (K _a)	Low plasticity, cohesive soils	0.36	45 pcf	85 pcf	
	Granular backfill material	0.31	40 pcf	80 pcf	
At Rest (K ₀)	Low plasticity, cohesive soils	0.53	65 pcf	95 pcf	
	Granular backfill material	0.47	60 pcf	90 pcf	
Passive (K _p)	Low plasticity, cohesive soils	2.77	335 pcf	235 pcf	
	Granular backfill material	3.25	390 pcf	265 pcf	

Table 6.1: Earth Pressure Parameters

*Assumed level backfill.

**Saturated conditions account for groundwater up to the top of the wall. If groundwater is expected to raise above the wall, adjustments will need to be made.

These design recommendations are based on the following assumptions:

• For active earth pressure, the wall must rotate out about its base with top lateral movements 0.002 Z to 0.004 Z (granular) or 0.010 Z to 0.020 Z (clays), where Z is wall height. This is necessary to allow the active condition to develop.

- For passive earth pressure, the wall must rotate in about its base with top lateral movements 0.020 Z to 0.060 Z (granular) or 0.020 Z to 0.040 Z (clays), where Z is wall height. This is necessary to allow the passive condition to develop.
- Drained conditions require the walls have a permanent drainage system behind the wall that will prevent hydrostatic pressure from developing. Moisture collected in the drain system should be collected in a sump pit and pumped away from the structure or daylight to a location that will gravity drain. If permanent drainage is not provided, undrained conditions and hydrostatic pressures should be used for design.
- The soil parameters provided above assume the backfill is level with the top of the wall. If a sloping backfill is utilized, the parameters will need to be reevaluated. In addition to a sloping backfill, the walls should be designed to resist surcharge loads, including nearby shallow foundations or other concentrated load components and traffic loads. Passive pressures are typically lower if the ground surface slopes downward away from the face of the wall.
- Backfill soils placed within the height of the retained wall should consist of well compacted selected granular soils or low-plasticity non-expansive cohesive soils. On-site overburden soils placed within the height of the retained wall consisting of non-expansive cohesive soils should be tested to verify these soils exhibit low plasticity and can achieve a minimum friction angle of 28 degrees and a unit weight of 120 pcf.
 Backfilled granular materials should have a minimum friction angle of 32 degrees and a unit weight of 120 pcf. For the granular values to be valid, the granular backfill must extend out from the base of the wall at an angle of at least 45 and 60 degrees from vertical for the active and passive cases, respectively. Fat clays and claystone fragments should not be used for retaining wall backfill.
- Passive resistance against horizontal movement within the frost zone of 3 feet should be ignored.
- Heavy equipment and other concentrated load components are not included. If heavy construction equipment is anticipated, the walls should be designed to resist surcharge loads, including any construction equipment load or traffic loads.
- Factor of safety is not included. The designer should use appropriate factor of safety for design.
- To calculate the resistance to sliding on native soil, a coefficient of friction value of 0.35 should be used where the footing is supported by engineer approved bearing soil.

To intercept infiltrating surface water behind the wall, we recommend a footing drain be installed at or slightly below the foundation level and/or weep holes be placed at regular intervals along the wall. The drain line invert should be below the finished subgrade elevation for the wall foundation. The drain line should be sloped to provide positive gravity drainage and should be surrounded by free-draining granular material graded to prevent the intrusion of fines, or an alternative free-draining granular material encapsulated with suitable filter fabric. A minimum 2-foot wide section of free-draining granular fill should be used for backfill above the drain line and adjacent to the wall, and should extend to within 2 feet of final grade. The granular backfill should be capped with compacted cohesive fill to minimize infiltration of surface water into the drain system.

6.6. SEISMIC CLASSIFICATION

For this project site, we recommend using a Site Class "C" (Very Dense Soil and Soft Rock profile) according to ASCE 7-10. This recommendation is based on the soils and bedrock conditions encountered in the borings during the exploration and our assumption that the encountered bedrock continue beyond the drilled depth to the full 100 feet. A seismic survey to 100 feet depth should be performed to verify a better site class. Site coefficients and spectral acceleration parameters for structural design are provided in Table 6.2 below for Site Class "B" and should be converted to Site Class "C" by the foundation designer accordingly.

Table 6.2: Seismic Design Parameters

Site	Latitude Longitude		2% in 5	50 Years	ASCE-07	Fa	E	
JIC	(North)	(West)	Ss	S₁	Site Class	∎a	Γv	
Westminster WTP	39.87857	105.06195	0.186	0.059	С	1.2	1.7	

Notes: $S_S = 0.2$ sec Mapped Spectral Acceleration (for Site Class B – foundation designer will need to adjust for class C)

 $S_1 = 1.0$ sec Mapped Spectral Acceleration (for Site Class B – foundation designer will need to adjust for class C)

 F_a = Short Period Seismic Design Factors

F_v = Long Period Seismic Design Factors

 S_{MS} = The maximum considered earthquake spectral response for short period = $F_a~S_S$

 S_{M1} = The maximum considered earthquake spectral response for 1-second period = $F_{\nu}\,S_{1}$

 S_{DS} = Design spectral response acceleration for short period = 2/3 S_{MS}

 S_{D1} = Design spectral response acceleration for 1-second period =2/3 S_{M1}

7. PAVEMENTS

7.1. PAVEMENT SUBGRADE PREPARATION

As previously discussed, site grading plans were not available at the time of this report. The recommendations for pavements discussed should be verified during the final geotechnical investigation, in accordance with the City of Westminster *Standards and Specifications*, Chapter 6, following the completion of grading and rough cutting of subgrade.

As part of our preliminary investigation, an R-value test was performed on materials collected from the center of the site at boring B-6 from an approximate depth of 1 to 5 feet which resulted in an R-value of "< 5." The City of Westminster requires that subgrade soils underlying the pavements with an R-value less than 10 or Plasticity Index (PI) greater than 15 percent must be stabilized.

Additionally, expansive soils with plasticity indices ranging from 21 to 36 percent were encountered across site, as discussed in *Sections 3.2* and *4*. The Colorado Department of Transportation *2020 Pavement Design Manual* recommends that treatment of expansive soils with Plasticity Indices ranging from 30 to 40 percent should extend to depths of 4 feet below normal subgrade elevation to reduce probable swell damage risk.

In order help reduce the risk of distress associated with expansive soils we recommend pavement areas should be overexcavated at least 4 feet below planned aggregate base elevation and replaced with structural fill in accordance with *Section 5.2*. The base of the overexcavation should be prepared in accordance with *Section 5.1*. If overexcavation is required to improve unstable areas identified during proofrolling, aggregate base (CDOT Class 6 material) should be used as backfill instead of structural fill. We also recommend that the overexcavation and subgrade preparation extend a minimum of 2-feet outside the roadway surface to provide edge support.

Shallow claystone bedrock was encountered at various depths across the project site. If encountered during site grading or overexcavation of pavement areas, excavated claystone fragments are not suitable for reuse as fill and should be removed from site.

It is important that the subgrade support be relatively uniform, with no abrupt changes in the degree of support. Non-uniform pavement support can occur at the transition from cut to fill areas, as a result of varying soil moisture contents or soil types, or where improperly placed utility backfill has been placed across or through areas to be paved. Improper subgrade

preparation such as inadequate vegetation removal, failure to identify soft or unstable areas, and inadequate or improper compaction can also produce non-uniform subgrade support.

Olsson should be present during subgrade preparation to observe, document, and test compaction of the materials at the time of placement. As recommended for all prepared soil subgrades, heavy, repetitive construction traffic should be controlled, especially during periods of wet weather, to minimize disturbance. The final prepared subgrade should be proofrolled with a loaded dump truck, or similar rubber-tired equipment with a total weight of at least 20-tons, immediately prior to placement of new pavements. Proofrolling operations should be observed and documented by **Olsson**. Unstable or unsuitable soils revealed by proofrolling should be reworked to provide a stable subgrade or removed and replaced with structural fill.

7.2. PRELIMINARY PAVEMENT DESIGN

The pavement section recommended below has been developed using a minimum R-value of 10, corresponding to a resilient modulus (M_R) of 3,560 psi and modulus of subgrade reaction (k_v) of 100 pci, was used for the subgrade soils assuming the subgrade preparation discussed in *Section 7.1* is completed.

For the heavy-duty pavement section, **Olsson** used the 18-kip Equivalent Single Axle Load (ESAL₁₈) value of 134,000. For the standard duty pavement section, **Olsson** assumed an 18-kip Equivalent Single Axle Load (ESAL₁₈) value of 25,000. ESAL values were calculated assuming the Phase II service traffic loads that were provided by CDM Smith and the City of Westminster. These pavement sections are not designed to accommodate increased traffic beyond the loads assumed in *Table 1.2* which includes heavy construction traffic associated with future construction of the facility. If the pavement sections below are exposed to traffic loads beyond those listed in *Table 1.2*, additional deflections, potentially significant cracking, and a decreased service life of the pavement should be expected.

ESAL₁₈ values calculated by *Olsson* were based on the respective traffic loadings referenced in *Table 1.2*, a personal vehicle split of half cars and half vans or trucks, a growth rate of 0.5%, AASHTO 1993 axle load equivalency factors, and a pavement design life of 20 years.

Design Assumptions	Westminster WTP
Equivalent Single Axle Loads (ESAL) – Heavy Duty	134,000
Equivalent Single Axle Loads (ESAL) – Standard Duty	25,000
Serviceability Index – Heavy Duty	2.5
Serviceability Index – Standard Duty	2.0
Reliability (percent) – Heavy Duty	90
Reliability (percent) – Standard Duty	85
Standard deviation, S ₀	0.40
Aggregate Base Course (ABC) Material	CDOT Class 6
ABC Minimum R-Value	70
AASHTO Design Subbase Material Classification	A-4 or A-6
Minimum R-Value – Subbase Soils Replaced as Structural Fill	10
Subbase Design Resilient Modulus M _R (psi)	3,560
PCCP compressive strength of concrete (psi)	4,000
PCCP concrete elastic modulus, E _c (psi)	3,600,000
PCCP concrete modulus of rupture, S'c (psi)	569
PCCP load transfer coefficient, J standard/heavy duty	4.0/2.7
Drainage coefficient for PCCP	0.8

Table 7.1: Summary of Pavement Design Value Assumptions

Table 7.2: Preliminary Minimum Pavement Sections

Standard Duty Pavement							
Hot Mix Asphalt (HMA)	Portland Concrete Cement Pavement (JPCP)						
4.0 inches HMA	4.5 inches PCCP						
7 inches Aggregate Base Course	4 inches Aggregate Base Course						
Structural Fill per Sections 5.2 and 7.1	Structural Fill per Sections 5.2 and 7.1						
Prepared Subgrade per Section 5.1	Prepared Subgrade per Section 5.1						
Heavy Duty Pavement							
Hot Mix Asphalt (HMA)	Portland Concrete Cement Pavement (PCCP)						
6 inches HMA	6 inches PCCP						
6 inches Aggregate Base Course	4 inches Aggregate Base Course						
Structural Fill per Sections 5.2 and 7.1	Structural Fill per Sections 5.2 and 7.1						
Prepared Subgrade per Section 5.1	Prepared Subgrade per Section 5.1						
Note: The aggregate base should consist of well graded sand and gravel conforming to CDOT Class 6 Aggregate Base material compacted per the Section 5.2.							

Olsson recommends that rigid concrete pavement be used in areas designated for heavily loaded trucks, lanes, or concentrated lanes of repetitive traffic, or in non-designated areas that could experience turning truck traffic.

The preliminary pavement sections provided above represent typical minimum thicknesses assuming routine maintenance. Routine maintenance of HMA (Hot Mix Asphalt) pavement typically consists of periodic seal coats and possibly one intermediate mill in addition to regular crack maintenance. Routine maintenance of PCCP (Portland Cement Concrete Pavement) typically involves regular crack maintenance. The performance of pavements will be dependent upon several factors, including subgrade conditions at the time of paving, rainwater runoff, and traffic.

Rainwater runoff should not be allowed to seep below pavements from adjacent areas. The thickness of the aggregate base (compacted Class 6 material) should be uniform, and the pavement subgrade should be graded to provide positive drainage of the granular base section. The granular section should be graded to adjacent storm sewer inlets and provisions should be made to provide drainage from the granular section into the storm sewer. Pavement surfaces should be sloped approximately 1/4 inch per foot to provide rapid surface drainage. Proper drainage below the surface layer helps prevent softening of the subgrade and has a significant impact on pavement performance.

8. LIMITATIONS

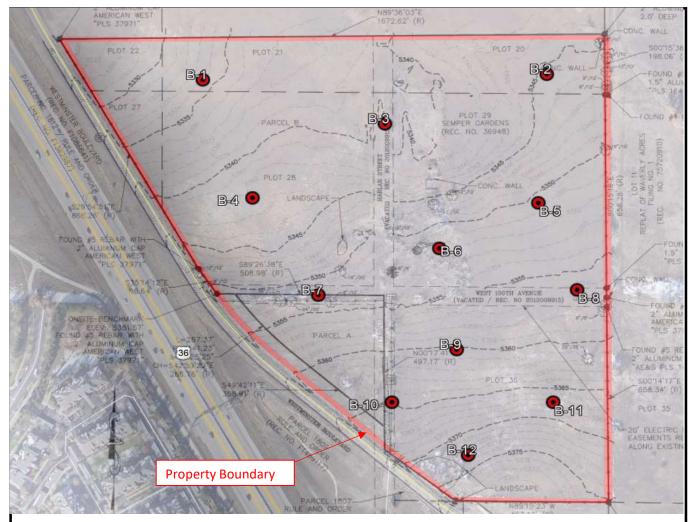
The conclusions and recommendations presented in this preliminary report are based on the information available regarding the proposed construction, the results obtained from our soil test borings and sampling procedures, the results of the laboratory testing program, and our experience with similar projects. The soil test borings represent a very small statistical sampling of subsurface soils and it is possible that conditions may be encountered during the final geotechnical investigation or during construction that are substantially different from those indicated by the soil test borings. In these instances, adjustments to design and construction may be necessary. This preliminary geotechnical report is based on the site plan and information provided to **Olsson** and our understanding of the project as noted in this report. Changes in the location or design of new structures and/or pavements could significantly affect the conclusions and recommendations presented in this geotechnical report. **Olsson** should be contacted in the event of such changes to determine if the recommendations of this report remain appropriate for the revised site design.

This report was prepared under the direction and supervision of a Professional Engineer registered in the State of Colorado with the firm of *Olsson*. The conclusions and recommendations contained herein are based on generally accepted professional geotechnical engineering practices at the time of this report within this geographic area. No other warranty is expressed, intended, or made. This report has been prepared for the exclusive use of **CDM Smith** and their authorized representatives for specific application to the proposed project.

REFERENCES

- American Concrete Institute (ACI) Standard 318-14, 2014. <u>Building Code Requirements for</u> <u>Structural Concrete and Commentary</u>.
- American Society of Civil Engineers Standard 7-10, 2010. <u>Minimum Design Loads for Buildings</u> and Other Structures.
- City of Westminster, 2019. Standards and Specifications.
- Colorado Association of Geotechnical Engineers, 1999. "Commentary on Geotechnical Practices, Drilled Pier Design Criteria for Lightly Loaded Structures in the Denver Metropolitan Area."
- Colorado Department of Transportation, 2020. CDOT ME Pavement Design Manual.
- Colorado Oil and Gas Conservation Commission, COGCC Online Database, accessed 2020. https://cogccmap.state.co.us/cogcc_gis_online/
- Das, B. M., 2010. Principles of Geotechnical Engineering, 7th Edition, Cengage Learning.
- Federal Emergency Management Agency, "FEMA Flood Map Service Center," <u>https://msc.fema.gov/portal/home</u>
- Hart, S., 1974. "Potentially Swelling Soil and Rock in the Front Range Urban Corridor, Colorado." Colorado Geological Survey, Department of Natural Resources, Denver, Colorado.
- International Code Council, 2015. 2015 International Building Code, Section 1605.3.2.
- Machette, M.N., 1977. "Geologic Map of the Lafayette Quadrangle, Adams, Boulder, and Jefferson Counties, Colorado." United States Geological Survey.
- NRCS Soil Survey website, accessed 2020. United States Department of Agriculture. <u>https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>
- Occupational Safety and Health Administration, Accessed 2020. Safety and Health Regulations for Construction, 29 CFR Part 1926. United State Department of Labor. <u>https://www.osha.gov/laws-regs/regulations/standardnumber/1926</u>
- Tweto, Ogden, 1979. "Geologic Map of Colorado." United States Geological Survey.
- USGS Earthquake Hazard Program Website, "Quaternary Fault and Fold Database of the United States", accessed 2020. <u>https://earthquake.usgs.gov/hazards/qfaults/</u>

- USGS Earthquake Hazard Program Website, accessed 2020. <u>http://earthquake.usgs.gov/research/hazmaps/products_data/2008/maps/</u>
- Walsh K.D., Colby C.A., Houston W.N., Houston S.L. (2009). "Method for evaluation of depth of wetting in residential areas." *Journal of Geotechnical and Geoenvironmental Engineering*, 135 (2), pp. 169-176
- Wishart, D.J., 2011. "Encyclopedia of the Great Plains." University of Nebraska Lincoln. <u>http://plainshumanities.unl.edu/encyclopedia/doc/egp.pe.047</u>


CDM Smith – Westminster Water 2025 Preliminary Design Project

Westminster, Colorado

March 4, 2021

Olsson Project No. 019-1378

APPENDIX A Boring Location Map

I.D.	Depth	Approximate	Pieozmeter	
B-1	50	39.880094° N	105.064531° W	Х
B-2	50	39.880138° N	105.060782° W	
B-3	50	39.879694° N	105.062543° W	
B-4	50	39.879026° N	105.063984° W	
B-5	50	39.878979° N	105.060876° W	
B-6	50	39.878570° N	105.061950° W	Х
B-7	50	39.878151° N	105.063263° W	
B-8	50	39.878198° N	105.060458° W	
B-9	50	39.877664° N	105.061763° W	
B-10	50	39.877194° N	105.062463° W	
B-11	50	39.877195° N	105.060722° W	
B-12	50	39.876726° N	105.061640° W	Х

		Boring Location Plan
	Scale: nts	Westminster 2025 Water Preliminary Design
	Project: 019-1378	Project
OISSON	Approved by: LAT	Westminster Boulevard near W 98th Ave
	Date: 03/01/2021	Westminster, Colorado

APPENDIX B

Symbols and Nomenclature, Boring Logs

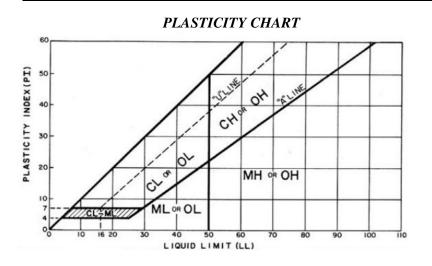
DRILLING NOTES

DRILLING AND SAMPLING SYMBOLS

SS:	Split-Spoon Sample (1.375" ID, 2.0" OD)		Hollow Stem Auger	NE:	Not Encountered					
U:	Thin-Walled Tube Sample (3.0" OD)	CFA:	Continuous Flight Auger	NP:	Not Performed					
CS:	Continuous Sample	HA:	Hand Auger	NA:	Not Applicable					
BS:	Bulk Sample	CPT:	Cone Penetration Test	% Rec:	Percent of Recovery					
MC:	Modified California Sampler	WB:	Wash Bore	WD:	While Drilling					
GB:	Grab Sample	FT:	Fish Tail Bit	IAD:	Immediately After Drilling					
SPT:	Standard Penetration Test Blows per 6.0"	RB:	Rock Bit	AD:	After Drilling					
	-	PP:	Pocket Penetrometer	CI:	Cave-In					
DRI	DRILLING PROCEDURES									

Soil samples designated as "U" samples on the boring logs were obtained in using Thin-Walled Tube Sampling techniques. Soil samples designated as "SS" samples were obtained during Penetration Test using a Split-Spoon Barrel sampler. The standard penetration resistance 'N' value is the number of blows of a 140 pound hammer falling 30 inches to drive the Split-Spoon sampler one foot. Soil samples designated as "MC" were obtained in using Thick-Walled, Ring-Lined, Split-Barrel Drive sampling techniques. Recovered samples were sealed in containers, labeled, and protected for transportation to the laboratory for testing.

WATER LEVEL MEASUREMENTS


Water levels indicated on the boring logs are levels measured in the borings at the times indicated. In relatively high permeable materials, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels is not possible with only short-term observations.

SOIL PROPERTIES & DESCRIPTIONS

Descriptions of the soils encountered in the soil test borings were prepared using Visual-Manual Procedures for Descriptions and Identification of Soils.

PARTICLE SIZE

COHI	ESIVE SOILS Unconfined Compressiv	e COHESIONI	LESS SOILS	COMPONENT %				
Consistency	Strength (Qu) (tsf)	Relative Density	'N' Value	Description	Percent (%)			
Very Soft	<0.25	Very Loose	0-3	Trace	<5			
Soft	0.25 - 0.5	Loose	4 – 9	Few	5 - 10			
Firm	0.5 - 1.0	Medium Dense	10 - 29	Little	15 - 25			
Stiff	1.0 - 2.0	Dense	30 - 49	Some	30 - 45			
Very Stiff	2.0 - 4.0	Very Dense	\geq 50	Mostly	50 - 100			
Hard	> 4.0	·						

ROCK QUALITY DESIGNATION (RQD)

Description	<u>RQD (%</u>
Very Poor	0 - 25
Poor	25 - 50
Fair	50 - 75
Good	75 - 90
Excellent	90 - 100

SOIL CLASSIFICATION CHART

				BOLS	TYPICAL			
M	AJOR DIVISI	ONS	GRAPH	LETTER	DESCRIPTIONS			
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES			
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES			
COARSE GRAINED SOILS	MORE THAN 50%	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES			
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES			
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES			
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES			
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES			
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES			
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY			
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS			
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY			
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS			
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY			
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS			
н	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS			

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

	OSSON [®] BOREHOLE REPORT NO				D. B-1 Sheet 1 of 2							
PROJ	ECT NAME Westminster Water 3	2025 Preliminary		CLIENT CDM Smith								
PROJI	ECT NUMBER 019-1			LOCATION Westminster, Colorado								
ELEVATION (ft)	Split Spoon MATERIAL DE APPROX. SURFACE ELEV. (ft):		GRAPHIC LOG	o DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS
	ROOT ZONE	0.5	<u><u> </u></u>									
	6 inches of organic rich cla FAT CLAY	у			ss 1		7-10-12 N=22					PP = >4.5 tsf
	with fine grained sand, ver white lensing, moist (CH)	y stiff, light brown with										
5330				 _5	MC 2		10-19					
					ss 3		6-8-8 N=16		21.6		56/36	PP = >4.5 tsf
5325	SANDSTONE	9.0			МС		10-32	3.6	12.7	113.3		PP = 3.5 tsf
	moderately cemented, slig brown, moist	htly oxidized, yellow		10	4							
	. ¥											
5320					🖂 ss		50					PP = >4.5 tsf
				 	5							
5315												
	- - -			20	MC 6		21-50/3"					PP = >4.5 tsf
5310		25.0		25	ss v		12-14-24		20.5			PP = >4.5 tsf
	CLAYSTONE				7		N=38					
	CONTINUED	27.0 NEXT PAGE	·									
WAT	ER LEVEL OBSERVATIONS			<u> </u>	1	STA	RTED:	8/2	25/20	 FINISI		8/25/20
WD	∇ Not Encountered	OLSSON								DRILL		
IAD	✓ Not Encountered	3990 FOX S	TRE	ET	040							
AD		DENVER, COLO	KAU	0 802	210		HOD: HOL					M. ALMAND
·	-										-' `	

OISSON [®] BOREHOLE REP			PORT NO. B-1				Sheet 2 of 2						
PROJECT NAME Westminster Water 2025 Preliminary					CLIENT CDM Smith								
PROJI	ECT NUMBER	2025 Freiminary		LOCATION									
	019-1	1378			1		Westmir	nster,	Colo	orado)		
ELEVATION (ft)	Split Spoon	Modified California Sampler	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS	
	CLAYSTONE												
 <u>5305</u> 	moderately weathered, sa oxidation lensing, moist	ndy, grayish brown with		30	MC 8		13-25					PP = >4.5 tsf	
 <u>5300</u> 	grades to with small crysta organic lensing	illization zones and		35	SS 9		10-12-24 N=36		16.3			PP = >4.5 tsf	
 <u>5295</u> 	grades to moderately to hi	ghly weathered		40	MC 10	, ,	16-50/3"					PP = >4.5 tsf	
 <u>5290</u> 	grades to slightly weathere inclusions, gray	ed, with organic or lignite		45	SS 11		21-50					PP = >4.5 tsf	
5285	grades to highly weathered content BASE OF BORIN		3'		MC 12]	50/4"	<u> </u>	11.5	<u> </u>			
	Note: Groundwater n	nonitoring well install	led fo	llowii	ng drill	ing.							
WAT	ER LEVEL OBSERVATIONS					STA	RTED:	8/2	5/20	FINISI	HED:	8/25/20	
WD	☑ Not Encountered	OLSSON 3990 FOX \$				DRIL	L CO.: \	/INE L	ABS	DRILL	RIG:	ATV	
IAD	▼ Not Encountered	DENVER, COLO			216	DRIL	LER: \	/INE L	ABS	LOGG	ED BY	. M. ALMAND	
AD	<u>▼</u> 12.4 ft after 144Hrs					METHOD: HOLLOW STEM AUGER							

\bigcap	olsson	OLE	RE	POF	RT NC). B	-2		S	hee	et 1	of 2	
PROJI	ECT NAME Westminster Water	-			CLIEN	Т			DM SI	mith			
PROJI	ECT NUMBER				LOCA	TION							
	019-1			1				Westmin	ster,	Colo	orado)	
ELEVATION (ft)	Split Spoon	Modified Californ Sampler	ia	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%)	ADDITIONAL DATA/ REMARKS
	APPROX. SURFACE ELEV. (ft)	: 5345.5			0	Ś	С						
5345	ROOT ZONE		0.5'	<u>st 1</u> 4 <u>s</u>									
-	6 inches of organic rich cla FAT CLAY	У)				ss 1		10-10-11 N=21					PP = >4.5 tsf
	with sand, very stiff, brown	, moist (CH)											
L -	grades to with white lensin	g	5.0'		 5	MC 2		8-11					PP = >4.5 tsf
5340	CLAYEY SAND		5.0		_ 5								
	fine grained sand, fat clay, moist (SC)	medium dense, brown,				ss 3		11-11-11 N=22		9.5			P-200 = 43.6% PP = >4.5 tsf
-			9.5'			мс		45.07					
5335	CLAYSTONE				10	4		15-27					PP = >4.5 tsf
	highly to moderately weath brown with heavy white ler	nered, with sand, light asing, moist											
	SANDSTONE		14.0'										
5330	poorly cemented, with grav	vel inclusions, light		· · · · · · · · · · · · · · · · · · ·	15	SS 5		7-7-7 N=14		10.4			PP = 3.25 tsf
			19.0'										
	CLAYSTONE				20	MC 6		24-26					
<u>5325</u>	moderately weathered, dan oxidation and organic lensi												
 5320	grades to slightly weathere	ed, blocky			25	SS 7		12-28-36 N=64					PP = 3.5 tsf
			27.0'										
<u> </u>	CONTINUED	NEXT PAGE											
WAT	ER LEVEL OBSERVATIONS						STA	RTED:	8/2	27/20	FINIS	HED:	8/27/20
WD	<u>⊽</u> 17.0 ft	3990 F			DRIL	LCO.: V	INE L	ABS	DRILL	RIG:	ATV		
IAD	¥ 34.2 ft after 0 Hrs		DENVER, COLORADO				DRIL	LER: V	INE L	ABS	LOGG	ED B)	C: M. ALMAND
AD	$\underline{\Psi}$ Not Performed						MET	HOD: CON	TINU	OUS F	LIGH	r aug	ER

	olsson	E RE	POF	RT NC). B	-2		S	hee	et 2 (of 2			
PROJI	ECT NAME Westminster Water	2025 Proliminany		CLIEN	T		CI	DM Sr	nith					
PROJ	ECT NUMBER	2025 Freiminary		LOCA	TION									
	019-1	378			1	1	Westmir	ister,	Colo	orado)			
ELEVATION (ft)	Split Spoon	Modified California Sampler ESCRIPTION	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS		
	CLAYSTONE													
 <u>5315</u>	slightly weathered, blocky, oxidation and organic lensi	slightly weathered, blocky, gray brown with minor oxidation and organic lensing, moist				,	16-50/2"					PP = >4.5 tsf		
 _5310	. ¥		35	SS 9		18-50		21.4			PP = >4.5 tsf			
 <u>- 5305</u>				40	MC 10		25-50					PP = >4.5 tsf		
				45	ss 11		23-50/3"					PP = >4.5 tsf		
<u>5300</u> 	moderately weathered, sa		3'											
	49.3' MC 50/3" PP = >4.5 tsf													
WAT						STA	RTED:	8/2	7/20	FINISH	HED:	8/27/20		
WD	<u>⊽</u> 17.0 ft	OLSSON 3990 FOX S			DRIL	L CO.: \	/INE L	ABS	DRILL	RIG:	AT∖			
IAD	¥ 34.2 ft after 0 Hrs	DENVER, COLORADO			216	DRIL	LER: \	INE L	ABS	LOGG	ED BY	. M. ALMAND		
AD	▼ Not Performed						HOD: CON	ITINUC	DUS F	LIGHT	T AUGI	ER		

\bigcap	olsson	RE	POF	RT NO). B	-3		S	hee	et 1	of 2	
PROJI		2025 Broliminan		CLIEN	Т				mith			
PROJ	Westminster Water	2025 Preliminary		LOCA	TION				mun			
	019-1	1378					Westmir	nster,	Colo	orado)	
ELEVATION (ft)	Split Spoon No Recovery MATERIAL DI	Modified California Sampler	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS
5340	APPROX. SURFACE ELEV. (ft) ROOT ZONE	: 5340.0	<u></u>	0		0						
	6 inches of organic rich cla FAT CLAY				ss 1		9-12-11 N=23					PP = >4.5 tsf
 5335	with sand, very stiff, brown moist (CH)	n with white lensing,		 5	MC 2		12-16		15.2	103.9		Swell (500 psf surcharge): 3.2%PP = >4.5
_0000												tsf
	grades to stiff, with trace g	ravel			SS 3		2-5-7 N=12					PP = >4.5 tsf
 <u>5330</u> 	CLAYSTONE slightly weathered, yellowis oxidation lenses, moist	9.0' sh light brown with small		10	MC 4		8-12		22.9	99.6		Swell (1000 psf surcharge): 1.2%PP = 4.0 ts
 <u>5325</u> 	grades to moderately weat lesning	thered, with organic		15	SS 5		9-18-15 N=33					PP = >4.5 tsf
 <u>5320</u> 	grades to slightly weathere	ed		20	MC 6		9-18					PP = >4.5 tsf
	SANDSTONE	24.0	,		× ss		29-50/2"					PP = 2.0 tsf
<u>5315</u> 	poorly cemented, brownisł	n yellow, moist 27.0	· · · · · · · · · · · · · · · · · · ·	25	<u> </u>							
	CONTINUED	NEXT PAGE										
WAT	ER LEVEL OBSERVATIONS				STAR	RTED:	8/2	28/20	FINISH	HED:	8/28/20	
WD	<u>⊽</u> 34.0 ft	OLSSON, 3990 FOX S			DRIL	L CO.: \	/INE L	ABS	DRILL	RIG:	ATV	
IAD	▼ Not Encountered	DENVER, COLOI		216	DRIL	LER: \	INE L	ABS	LOGG	ED B	Y: M. ALMAND	
AD	$\underline{\Psi}$ Not Performed					MET	HOD: CON	ITINU	OUS F	LIGHT	Γ AUG	ER

	OISSON °	RE	POF	RT NC). B	-3		S	hee	et 2 d	of 2	
PROJI	ECT NAME Westminster Water	2025 Proliminary		CLIEN	Г		C	DM Si	mith			
PROJI	ECT NUMBER			LOCA	ΓΙΟΝ							
	019-1		1			1	Westmi	nster,	Colo	orado)	
NO	Split Spoon	Modified California Sampler	<u>ں</u>	- -	YPE		.9 JE	Ŕ	RE	SITY		
ELEVATION (ft)		ESCRIPTION	GRAPHIC LOG	DEPTH (ft)	LE 1 MBE	JSCS	BLOWS/6" N-VALUE	UNC. STR (tsf)	MOISTURE (%)	DEN: (pcf)	LL/PI (%)	ADDITIONAL DATA/
ELE	MATERIAL D	ESCRIPTION	ß		SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	N BL	N	MO	DRY DENSITY (pcf)		REMARKS
	SANDSTONE											
	poorly cemented, brownisl	h yellow, moist		·								
5310	grades to with large sands matrix	tone fragments in		30	MC 8		50/2"					
				· 								
	∇	34.0'	· · · · ·	: :								
 5305		34.0		35	⊠ ss 9		50	_				PP = 4.0 tsf
0000	moderately weathered, ye	llowish brown, wet										
5300	grades to slightly weathere	ed		40	MC 10	ļ	33-50/4"		22.6	94.4		PP = >4.5 tsf
					≤ SS		50/2"					PP = 3.0 tsf
5295	grades to highly weathered	d, sandy, bluish gray		45	11	J						FF - 3.0 ISI
	BASE OF BORIN	49.1' IG AT 49.1 FEET			NR	<u> </u>	50/1"	<u> </u>				
					12	J						
WAT	ER LEVEL OBSERVATIONS				STA	RTED:	8/2	8/20	FINISI	HED:	8/28/20	
WD	∑ 34.0 ft	OLSSON, INC. 3990 FOX STREI				DRIL	L CO.:	VINE L	ABS	DRILL	RIG:	AT∖
IAD	▼ Not Encountered	DENVER, COLORAD			216	DRIL	LER:	VINE L	ABS	LOGG	ED BY	: M. ALMAND
AD	<u> </u>					MET	HOD: CON	NTINUC	DUS F	LIGH	r auge	ĒR

\bigcap	olsson	OLE I	RE	POF	RT NO). B	-4		S	hee	et 1	of 2	
PROJE	CT NAME Westminster Water	2025 Preliminary			CLIEN	IT		C	DM S	mith			
PROJI	ECT NUMBER 019-1				LOCA	TION		Westmir	nster,	Colo	orado)	
	Modified California Sampler	Split Spoon		GRAPHIC LOG	TH ()	E TYPE BER	CLASSIFICATION (USCS)	NS/6"	STR.	rure	eNSITY of)	()	ADDITIONAL
ELEVATION (ft)	MATERIAL DI	ESCRIPTION		GRAI	DEPTH (ft)	SAMPLE TYPE NUMBER	(US)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE	DRY DENSITY (pcf)	(%) (%)	DATA/ REMARKS
	APPROX. SURFACE ELEV. (ft) ROOT ZONE	: 5342.5	0.5'	<u>, 1, (t</u>	0		0						
	6 inches of organic rich cla LEAN TO FAT CLAY	У				MC 1		6-10					PP = >4.5 tsf
<u>5340</u>	with sand, medium dense, lensing, moist (CL/CH)	light brown with white											
					5	ss 2		8-9-8 N=17					PP = >4.5 tsf
	CLAYSTONE		6.0'			мс	CL	3-9		18.9		40/25	P-200 = 64.1%
5335	slightly weathered, brownis lensing, moist	sh gray with oxidation				3		0-0		10.0		+0/20	PP = >4.5 tsf
	grades to with white crysta	llization lesning			 10	ss 4		6-8-10 N=18					PP = 4.5 tsf
 <u>5330</u> 	grades to with black organ	ic inclusions			 	MC 5		12-17	8.2	17.2	110.3		PP = >4.5 tsf
 <u>5325</u> 			19.0'										
	SANDSTONE		•		20	$\boxed{6}$		16-50/4"		15.8			PP = >4.5 tsf
 5320	moderately cemented, slig brown, moist	ntiy weathered, yenow											
					 25	MC 7		23-27					PP = >4.5 tsf
	CONTINUED	NEXT PAGE	27.0' :										
WAT	ER LEVEL OBSERVATIONS						STA	RTED:	8/2	25/20	FINISH	HED:	8/25/20
WD	<u>⊽</u> 34.0 ft	OLSS 3990 FC			DRIL	L CO.: \	/INE L	ABS	DRILL	RIG:	ATV		
IAD	¥ 33.5 ft after 0 Hrs	DENVER, CO			216	DRIL	LER: \	/INE L	ABS	LOGG	ED B)	C: M. ALMAND	
AD	$\underline{\Psi}$ Not Performed						MET	HOD: CON	ITINU	OUS F	LIGH	r aug	ER

	olsson	BOREHOLE	RT NC). B	-4		S	hee	et 2	of 2		
PROJ	ECT NAME Westminster Water	2025 Preliminary		CLIEN	Т		С	DM S	mith			
PROJI	ECT NUMBER 019-			LOCA	TION		Westmi			orado)	
ELEVATION (ft)	Modified California Sampler	Split Spoon	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS
5315	SANDSTONE					ပ						
	moderately cemented, slig brown, moist	htly weathered, yellow			SS 8		23-50					PP = >4.5 tsf
 <u>5310</u>	. y			MC								
 <u>5305</u>]	50/5"					PP = >4.5 tsf
	CLAYSTONE	39.0'		: 40	SS 10		18-50		28.8			PP = >4.5 tsf
 <u>- 5300</u>	slightly weathered, blocky	, dark gray, moist										
				– – 45	MC 11		50					PP = >4.5 tsf
 <u>5295</u>						-						
	grades to bluish gray	49.3'	,		SS 12		50/3"	<u> </u>				PP = >4.5 tsf
	BASE OF BORING AT 49.3 FEET											
	ER LEVEL OBSERVATIONS					RTED:			FINISI		8/25/20	
WD	 <u>∑</u> 34.0 ft <u>▼</u> 33.5 ft after 0 Hrs 	OLSSON, 3990 FOX S	ET								ATV	
IAD AD	$\underline{\Psi}$ Solve and the other set of the set o	DENVER, COLOF	RAD	O 802	216		HOD: CON					
\sim	- <u>-</u>						100.00	111100	503 F	LIGH	, 400	

	olsson	RE	POF	RT NO). B	-5		S	hee	et 1	of 2	
PROJI	ECT NAME Westminster Water	2025 Preliminary		CLIEI	NT		CI		mith			
PROJI	ECT NUMBER 019- 2			LOCA	TION		Westmir			orado	<u> </u>	
	Modified California Sampler	Split Spoon	оніс G	۲ ₀	E TYPE BER	CLASSIFICATION (USCS)						ADDITIONAL
ELEVATION (ft)	MATERIAL D	ESCRIPTION	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	(USC)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%)	DATA/ REMARKS
5350	APPROX. SURFACE ELEV. (ft)	: 5350.5 5'	<u>1. x¹ k</u>	0		0						
	6 inches of organic rich cla	ay			MC 1		8-10					PP = >4.5 tsf
	LEAN TO FAT CLAY	war with white landing										
	with sand, very stiff, light b moist (CL/CH)	rown with white lensing,			ss 🗸		8-8-10					
 5345				5	2		N=18		10.5			PP = >4.5 tsf
0040		grades to with trace gravel					10-14					PP = >4.5 tsf
	grades to with trace grave			3		10-14					FF - 24.5 (SI	
		9.0'			-							
	SANDSTONE			10	ss 4		8-8-8 N=16					PP = >4.5 tsf
5340	moderately cemented, yel	lowish brown, moist					N=10					
			· · · · · · · · · · · · · · · · · · ·		-							
			· · · · ·	- - - -	-							
	aradaa ta whitiah wallow		· · · · ·	 15	MC 5		18-22		4.6			PP = >4.5 tsf
5335	grades to whitish yellow		· · · · ·									
				- - 	-							
	CLAYSTONE	19.0	,		∕∕ ss		27-50					PP = >4.5 tsf
5330	moderately weathered, ye	llow brown, moist		_20	6		27-50					FF - 24.5 (SI
					MC							
 5325	grades to slightly weathere lensing and organic inclusi			25			15-50/5"					
					-							
	CONTINUED	27.0 NEXT PAGE										
WAT	ER LEVEL OBSERVATIONS				STA	RTED:	8/2	7/20	FINISI	HED:	8/27/20	
WD	⊻ 40.0 ft	OLSSON, 3990 FOX S			DRIL	L CO.: \	/INE L	ABS	DRILL	RIG:	ATV	
IAD	¥ 38.6 ft after 0 Hrs		DENVER, COLORAD				LER: \	/INE L	ABS	LOGG	ED B	C: M. ALMAND
AD	$\underline{\Psi}$ Not Performed					MET	HOD: CON	ITINU	DUS F	LIGH	Г AUG	ER

	OSSON [®] BOREHOLE REPORT						-5		S	hee	et 2	of 2
PROJE	ECT NAME Westminster Water	2025 Preliminary		CLIEN	Г		CI		mith			
PROJE	ECT NUMBER 019-1			LOCA	ΓΙΟΝ		Westmir	nster,	Colo	orado)	
ELEVATION (ft)	Modified California Sampler MATERIAL DI	Split Spoon	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS
	CLAYSTONE											
	slightly weathered, organis lensing and organic inclusi	h brown with oxidation ons, moist		30			8-14-23		26.4			PP = >4.5 tsf
<u>5320</u> 				8		N=37						
			35	MC 9		27-50/3"					PP = >4.5 tsf	
<u>5315</u> 	. Y											
		l. wet		40	⊠ SS 10		50					PP = >4.5 tsf
<u>5310</u> 									10.0	102.0		
 <u>5305</u> 	grades to sandy, bluish gra	ay, moist		45		J	50		16.0	102.0		
	grades to moderately weat				$\times \frac{\text{ss}}{12}$		27-50/3"					
	BASE OF BORING AT 49.8 FEET											
	ER LEVEL OBSERVATIONS		1			RTED:			FINISI		8/27/20	
WD	 <u>✓</u> 40.0 ft <u>✓</u> 38.6 ft after 0 Hrs <u>✓</u> 	OLSSON, 3990 FOX S	ET				/INE L				ATV	
IAD AD	✓ Not Performed	DENVER, COLOF	κAD	U 802	216						ED BY	
	-								5551	2.011		

	olsson	RE	POF). B	-6		S	hee	et 1	of 2	
PROJI	ECT NAME Westminster Water	2025 Preliminary		CLIEN	Т		CI		mith			
PROJI	ECT NUMBER 019-7	-		LOCA	TION		Westmir			orado		
	Split Spoon	Modified California					vvestinn					
NOIT		Sampler	ы НС	E	TYPE	CATIO	S/6" UE	STR.	URE		•	ADDITIONAL
ELEVATION (ft)	MATERIAL D	ESCRIPTION	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%)	DATA/ REMARKS
	APPROX. SURFACE ELEV. (ft)	: 5352.0	1.31 1/2 ·	0		0						
	4 inches of organic rich cla				∕∕ ss		6-6-9					
5350	LEAN TO FAT CLAY						N=15					PP = >4.5 tsf
	with sand and trace silt, st lensing, moist (CL/CH)	iff, light brown with white										0 11 (500 6
	grades to very stiff			 5	MC 2		7-11		10.0	110.1		Swell (500 psf surcharge): 2.1%PP = >4.5
		6.0'										tsf
5345	SANDSTONE		· · · · ·	+	ss 3		7-7-7 N=14		8.2			P-200 = 35.4% PP = >4.5 tsf
	moderately cemented, with brown, moist	h trace gravel, yellow	· · · · · · · · · · · · · · · · · · ·		/ 3		IN-14					FF - 24.5 (SI
			· · · · ·	: : :	4.140							
				10	MC 4		6-20	3.8	9.4	113.9		PP = >4.5 tsf
				: :								
5340				: :								
				: 								
		14.5'	· · · · ·		∕∕ ss		6-9-10					
	CLAYSTONE			15	5		N=19					PP = >4.5 tsf
 5335	slightly weathered, with ox yellowish light brown, mois											
_5555	.⊉											
	grades to gray			20	MC 6		5-15		21.9			PP = >4.5 tsf
5330												
	SANDSTONE	24.0'		- 	∖ ss		40.50					
	moderately cemented, yel	low brown, moist		25	7		10-50		17.4			PP = 3.0 tsf
				: 								
5325	CONTINUED	NEXT PAGE	· · · · ·									
WAT	ER LEVEL OBSERVATIONS					STA	RTED:	8/2	4/20	FINISH	HED:	8/24/20
WD	∑ 40.0 ft	OLSSON, 3990 FOX S	ст		DRIL	L CO.: \	/INE L	ABS	DRILL	RIG:	ATV	
IAD	¥ 47.6 ft after 0 Hrs	DENVER, COLOF		216	DRIL	LER: \	/INE L	ABS	LOGG	ED B	C: M. ALMAND	
AD	<u>▼</u> 17.4 ft after 168Hrs	, -				MET	HOD: HOL	LOW	STEM	AUGE	R	

OISSON® BOREHOLE REPORT NO. B PROJECT NAME CLIENT Westminster Water 2025 Preliminary CLIENT PROJECT NUMBER LOCATION		M Smith										
		ster, Colora	do									
NOTERIAL DESCRIPTION Modified California Sampler DB LATION DB LATI		UNC. STR. (tsf) MOISTURE (%) DRY DENSITY										
5325 SANDSTONE												
moderately cemented, yellow brown, moist	50											
CLAYSTONE 35 SS slightly weathered, brown with oxidation and organic or lignite lensing, moist 35 9	12-22-28 N=50											
5315	50		PP = 4.0 tsf									
grades to slightly weathered 5305	21-50	18.8	PP = >4.5 tsf									
<i>grades to moderately weathered</i> <i>BASE OF BORING AT 49.3 FEET</i> Note: Groundwater monitoring well installed following drilling	grades to moderately weathered											
	y.											
	RTED:	8/24/20 FIN										
3990 FOX STREET		NE LABS DRI										
		NE LABS LOO										

\bigcap	OSSON [®] BOREHOLE					RT NO). B	-7		S	hee	et 1	of 2
PROJI	ECT NAME Westminster Water	2025 Preliminary			CLIEN	Т		CI	DM SI	mith			
PROJI	ECT NUMBER 019- 1				LOCA	TION		Westmir			orado		
NOIL	Modified California Sampler	Split Spoon		UH U	Ξ.	E TYPE BER							ADDITIONAL
ELEVATION (ft)	MATERIAL D	ESCRIPTION		GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%) (%)	DATA/ REMARKS
	APPROX. SURFACE ELEV. (ft) ROOT ZONE	: 5353.0	0.5'	1 <u>x¹ / x</u>	0								
	6 inches of organic rich cla LEAN TO FAT CLAY	у				MC 1		6-12		12.9	115.3		Swell (150 psf surcharge): 6.2%PP = >4.5
5350	with sand, very stiff, light b moist (CL/CH)	rown with white lensing,											tsf
	grades to stiff				5	SS 2		6-7-7 N=14					PP = >4.5 tsf
	CLAYSTONE		6.0'			MC		11-17		17.0	104.9		Swell (500 psf
 5345	slightly weathered, yellowi lensing, moist	sh gray with white				3							surcharge): 6.2%PP = >4.5 tsf
		grades to with organic inclusions				ss 4		6-14-11 N=25					PP = >4.5 tsf
 5340	SANDSTONE moderately cemented, with brown, moist	n gravel in matrix, yellow											
					 _ <u>15</u>	MC 5		12-50/3"		16.2	107.9		PP = >4.5 tsf
5335						× ss		50					PP = 3.0 tsf
	grades to with oxidation le	nsing, whitish yellow				6							
5330													
- 1	CLAYSTONE		24.0'		 25	MC		11-17					PP = >4.5 tsf
	slightly weathered, grayish brown, moist												
	CONTINUED		27.0'										
WAT	CONTINUED NEXT PAGE						STAR	RTED:	8/2	6/20	FINISI	HED.	8/26/20
WD	∑ 19.0 ft		OLSSON, INC 3990 FOX STRE DENVER, COLORAD								DRILL		6/20/20
IAD	 ▼ 33.7 ft after 0 Hrs					216					LOGG		
AD	$\underline{\Psi}$ Not Performed	, -					MET	HOD: CON			LIGHT	Г AUG	ER

\bigcap	olsson	ERE	POF	RT NC). В	5-7		S	hee	et 2	of 2	
PROJI	ECT NAME Westminster Water	2025 Preliminary		CLIEN	Т		CI	OM S	mith			
PROJI	ECT NUMBER			LOCA	TION							
	019-1 Modified California						Westmir	ister,)	
N	Sampler	Split Spoon	<u>u</u>	-	ΥPE		<u>ш</u>	<u>e</u> ż	Ш	¥TI8		
ELEVATION (ft)	MATERIAL D	ESCRIPTION	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%)	additional Data/ Remarks
5325	CLAYSTONE											
_0020	slightly weathered, grayish lensing and organic or lign) brown with oxidation ite lensing, moist										
				30	ss 8		10-12-16 N=28		27.9			PP = >4.5 tsf
L _							11-20					
5320	_											
	.			мс		11-20						
			35	9		11-20						
5315												
		40.0)'	40	ss 10		10-12-16 N=28					PP = >4.5 tsf
	SANDSTONE		· · · · · · · · · · · · · · · · · · ·	:								
	moderately cemented, yell	ow brown, wet										
5310			· · · · · · · · · · · · · · · · · · ·	:								
	CLAYSTONE	44.0)' ::::: ====	: 	мс		50/2"	<u>}</u>				PP = 3.0 tsf
	highly weathered, sandy, g	gray, wet		45	11	J						
 5305												
		49.3	,									
	BASE OF BORIN				SS 12		50/3"					PP = 1.5 tsf
WAT	ER LEVEL OBSERVATIONS				STA	RTED:	8/2	26/20	FINISI	HED:	8/26/20	
WD	<u>⊽</u> 19.0 ft	OLSSON 3990 FOX S			DRIL	L CO.: \	/INE L	ABS	DRILL	RIG:	AT∖	
IAD	¥ 33.7 ft after 0 Hrs	DENVER, COLO		216	DRIL	LER: \	/INE L	ABS	LOGG	ED B	C: M. ALMAND	
AD						MET	HOD: CON	ITINU		LIGH	T AUG	ER

	olsson	BOREHOLE	RE	REPORT NO. B-8 Sheet 1 of 2						of 2		
PROJE	ECT NAME Westminster Water	2025 Preliminary		CLIENT	Г		CI	DM Si	mith			
PROJI	ECT NUMBER 019-			LOCA	TION		Westmir			orado)	
ELEVATION (ft)	Split Spoon MATERIAL D		GRAPHIC LOG	o DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS
	APPROX. SURFACE ELEV. (ft)	. 5556.5 	<u>x 14: x</u>									
5355	6 inches of organic rich cla LEAN CLAY				ss 1		12-16-16 N=32				40/23	PP = >4.5 tsf
	with sand, hard, brown, m	oist (CL)			MC		40.47	40.0	7.0	110.0		
				5	2		12-17	10.6	7.3	118.3		PP = >4.5 tsf
5350		7.0'			ss 3		3-2-5 N=7					PP = 1.5 tsf
	CLAYSTONE slightly weathered, yellow	brown moist					IN-7					
	SANDSTONE	9.0'		= 	MC		8-50					PP = >4.5 tsf
 5345 	moderately cemented, yel	low brown, moist			4		6-50					PP - 24.3 ISI
	CLAYSTONE	14.0'	,	15	∕∕ ss		9-11-15		23.5			PP = >4.5 tsf
 <u>5340</u> 	moderately weathered, wi with oxidation lensing and inclusions, moist	th sand, brownish gray organic or lignite			5		N=26		20.0			11 - 74.0 (5)
				20	MC 6		18-32		22.6	103.7		PP = >4.5 tsf
<u>5335</u> 												
				25	SS 7		8-9-13 N=22					PP = >4.5 tsf
5330		27.0'	,									
	CONTINUED	NEXT PAGE										
		OLSSON,	•		STA	RTED:			FINISH		8/27/20	
WD	$\overline{2}$ 36.4 ft	3990 FOX S	ET						S DRILL RIG: ATV			
IAD	 	DENVER, COLO	RAD	O 802	216						ED BY	
AD						METHOD: CONTINUOUS FLIGHT AUGER						

\bigcap	olsson	BOREHOL	DLE REPORT NO. B-8 Sheet 2 of 2								of 2	
PROJE	ECT NAME Westminster Water	2025 Preliminary		CLIEN	Т		CI	DM SI	mith			
PROJE	CT NUMBER 019-1			LOCA	ΓΙΟΝ		Westmir			orado		
	Split Spoon	Modified California Sampler	0 G	HF (E TYPE BER							ADDITIONAL
ELEVATION (ff)	MATERIAL DE	SCRIPTION	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE	DRY DENSITY (pcf)	(%)	DATA/ REMARKS
	CLAYSTONE											
	moderately weathered, witl with oxidation lensing and o inclusions, moist	n sand, brownish gray organic or lignite		30	MC 8		16-50/4"					PP = >4.5 tsf
 5325												
				∑ ss								
 5320	.∇			35	× 9	<u> </u>	23-50/3"					PP = >4.5 tsf
	. <u>↓</u>											
	grades to wet				MC 10		21-28					PP = >4.5 tsf
<u>5315</u> 												
	grades to dark gray, increa	sed sand content		45	⊠_ss _11		50					PP = >4.5 tsf
 <u>5310</u>	¥											
		49.	.3'		мс		50/4"					PP = >4.5 tsf
BASE OF BORING AT 49.3 FEET												
WAT	ER LEVEL OBSERVATIONS					STA	RTED:	8/2	27/20	FINISI	HED:	8/27/20
WD	WD ☑ 36.4 ft OLSSON, IN IAD ☑ 47.4 ft after 0 Hrs 3990 FOX STR DENVER, COLORAI								VINE LABS DRILL RIG:			ATV
IAD												
AD	$\underline{\Psi}$ Not Performed				MET	HOD: CON		DUS F	LIGH	T AUG		

	olsson	BOREHOLE	ERE	REPORT NO. B-9 Sheet 1 of 2							of 2	
PROJI	ECT NAME Westminster Water	2025 Preliminary		CLIEN	T		CI	OM S	mith			
PROJI	ECT NUMBER 019-7			LOCA	TION		Westmir			orado		
	Split Spoon	Modified California					vvestiim					
		Sampler	SHIC	H	E TYPE BER	ICATIO CS)	VS/6" LUE	STR.		ensity of)	IL (i)	ADDITIONAL
ELEVATION (ft)	MATERIAL D	ESCRIPTION	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%) (%)	DATA/ REMARKS
5360	APPROX. SURFACE ELEV. (ft) ROOT ZONE	: 5360.0 0.5	<u>x 1,</u>	0								
-	6 inches of organic rich cla	ay			∬ ss		7-6-6					
	LEAN CLAY	<u> </u>					N=12					PP = >4.5 tsf
-	with sand, stiff, light brown	n, moist (CL)										
	grades to very stiff				MC 2		9-11	7.9	12.8	108.0		PP = >4.5 tsf
5355		6.0'		5	-							
- 1	SANDSTONE	0.0	 	 - -	V ss		15-16-17					PP = >4.5 tsf
-	moderately cemented, ora	ngish brown, moist		.	3		N=33					11 7 4.0 101
-			· · · · · · · · · · · · · · · · · · ·	· · ·	-							
5350			· · · · · · · · · ·	10	MC 4		12-50					
			· · · · · · · · · · · · · · · · · · ·	:[]								
			· · · · · · · · · · · · · · · · · · ·									
5345	grades to with small sands	stone fragments in	· · · · · · · · · · · · · · · · · · ·	15	\times ss 5	<u> </u>	50					PP = 3.25 tsf
L.	matrix			: 	-							
L _					_							
L _				.	_							
L -			· · · · · · · · · · · · · · · · · · ·	: : :								
5340	CLAYSTONE	20.0	•	20	MC 6	<u> </u>	15-50/4"	2.6	12.5	108.5		PP = >4.5 tsf
-	slightly weathered, with sn	nall avidation lanses			-							
	yellow brown, moist	nan oxidalion ienses,			-							
					-							
							7 40 45					
5335	grades to with organic or l	ignite inclusions		25	SS 7		7-10-15 N=25					PP = >4.5 tsf
					-							
<u> </u>	CONTINUED	27.0 NEXT PAGE)' <u> </u>									
WAT	ATER LEVEL OBSERVATIONS				1	STA	RTED:	8/2	26/20	FINISI	HED:	8/26/20
WD	<u>⊽</u> 35.0 ft	OLSSON						ABS	S DRILL RIG: ATV			
IAD	¥ 34.6 ft after 0 Hrs	34.6 ft after 0 Hrs 3990 FOX STF DENVER, COLORA								S LOGGED BY: M. ALMAND		
AD	<u> </u>			2 00		MET	HOD: CON	ITINU	OUS F	S FLIGHT AUGER		

[olsson	BOREHOLE	E RE	EPORT NO. B-9						Sheet 2 of 2			
PROJE	ECT NAME Westminster Water	2025 Preliminary		CLIEN	Т		с	DM S	mith				
PROJE	ECT NUMBER 019-			LOCA	LOCATION Westminster, Colorado								
ELEVATION (ft)	Split Spoon	Modified California Sampler	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)				ADDITIONAL DATA/ REMARKS	
	CLAYSTONE												
 _ <u>5330</u> _ 	slightly weathered, yellow oxidation lenses and orga moist	slightly weathered, yellow brown with small oxidation lenses and organic or lignite inclusions, moist					14-26					PP = >4.5 tsf	
	¥			≍ ss		50/5"					PP = 1.75 tsf		
<u>5325</u> 	$\sum 6$ inch sandstone lense no			35	9	J							
 <u>5320</u> 	SANDSTONE poorly cemented, with oxid brown, moist	39.0		40	MC 10	J	50						
 <u>5315</u> 	CLAYSTONE highly weathered, sandy, l	44.6		45	SS 11]	50/2"						
	BASE OF BORIN	49.: IG AT 49.3 FEET	3'		MC 12	<u> </u>	50/4"	<u> </u>				PP = >4.5 tsf	
-	WATER LEVEL OBSERVATIONS OLSSON, INC. ∇ 35.0 ft						RTED:			FINISI		8/26/20	
WD IAD	 <u>✓</u> 35.0 ft <u>▼</u> 34.6 ft after 0 Hrs 	- 3990 FOX STRE			040								
AD	$\underline{\underline{Y}}$ Not Performed	DENVER, COLO	DENVER, COLORADO				LER: HOD: COI						

	olsson	BOREHOLE	REI	POR		. В-	·10		S	hee	et 1	of 2		
PROJ	ECT NAME Westminster Water	2025 Proliminary		CLIEN	Т		CI		mith					
PROJI	ECT NUMBER			LOCA	TION									
	019-1						Westmir	ister,	Cold)			
ELEVATION (ft)	Split Spoon	Modified California Sampler	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS		
5365	APPROX. SURFACE ELEV. (ft) ROOT ZONE	: 5365.0	<u></u>	0										
	6 inches of organic rich cla SANDY CLAY				ss 1	CL	6-8-8 N=16		11.7		44/30	P-200 = 50.8% PP = >4.5 tsf		
	very stiff, brown with white	lensing, moist (CL)												
					MC 2		8-12					PP = >4.5 tsf		
5360		6.0'		5										
	CLAYEY SAND	0.0			ss 3		7-10-11					PP = >4.5 tsf		
	medium dense, brown with (SC)	h white lensing, moist			3		N=21							
	SANDSTONE	9.0'			MC									
5355	poorly cemented, with small	all oxidation lenses		10	4		9-18		12.9					
	whitish brown, moist	14.0'												
5350	CLAYSTONE			15	🛛 ss		6-9-13		22.4			PP = >4.5 tsf		
	slightly weathered, tan with or lignite lensing, moist	h oxidation and organic			5		N=22							
5345				20	MC 6		10-29					PP = >4.5 tsf		
5340	grades to yellowish brown			25	SS 7		6-10-15 N=25					PP = >4.5 tsf		
		27.0'												
	CONTINUED	NEXT PAGE												
WAT	ER LEVEL OBSERVATIONS	01 00011			STA	RTED:	8/2	24/20	FINISI	HED:	8/24/20			
WD	$\underline{\nabla}$ Not Encountered	OLSSON, 3990 FOX S			DRILL CO.: VINE LABS			ABS	S DRILL RIG: ATV					
IAD	▼ Not Encountered	DENVER, COLOR		216	DRILLER: VINE LABS LOGGED BY: M. A				: M. ALMAND					
AD	▼ Not Performed							METHOD: HOLLOW STEM AUGER						

	olsson	BOREHOLE	RE	POR	T NO	. B-	-10		S	of 2		
PROJE		2025 Droliminon/		CLIEN ⁻	Г				mith			
PROJ	Westminster Water	2025 Prenninary		LOCA	TION				mun			
	019-1	378	1		1		Westmir	nster,	Colo	orado)	
ELEVATION (ft)	Split Spoon	Modified California Sampler	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%)	ADDITIONAL DATA/ REMARKS
	CLAYSTONE											
	slightly weathered, yellowis and organic or lignite lensir	sh brown with oxidation na. moist 29.0'			-							
5335	SANDSTONE	.g,		30	MC 8		50/5"	-	14.2			
	poorly cemented, yellow or lensing, moist	ange, with oxidation				L						
 5330	grades to moderately ceme	ented		35	ss s		10-20-20					PP = >4.5 tsf
	,				9		N=40					
				: 	MC		50/5"					PP = >4.5 tsf
<u>5325</u> 	grades to gray	44.0'		40	<u>10</u>	J						
5320	CLAYSTONE			45			21-50/5"					PP = >4.5 tsf
	moderately to highly weath bedded, gray, moist											
	BASE OF BORIN	49.3' G AT 49.3 FEET			MC 12	\vdash	50/4"					PP = >4.5 tsf
WAT	WATER LEVEL OBSERVATIONS					STA	RTED:	8/2	24/20	FINISI	HED:	8/24/20
WD	3990 FOX STRF					DRIL	L CO.: \	L CO.: VINE LABS DRILL RIG: A				
IAD	▼ Not Encountered	DENVER, COLOF		216	DRIL	RILLER: VINE LABS LOGGED BY: M. ALMAND						
AD	<u> </u>				METHOD: HOLLOW STEM AUGER							

\bigcap	olsson	BOREHO	OLE	REI	POR		. В-	·11	Sheet 1 of 2				
PROJI	ECT NAME Westminster Water 2	025 Preliminary			CLIEN	Т		CI	OM S	mith			
PROJI	ECT NUMBER				LOCA	TION							
	019-13	378						Westmir	ister,	Cold	brado)	
ELEVATION (ft)	Modified California Sampler	Split Spoon		GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/
ELEY	MATERIAL DE	SCRIPTION		GR	ā	SAMP NU	(U)	BLO N-V	D N	MOI	DRY I		REMARKS
	APPROX. SURFACE ELEV. (ft):	5367.5			0		ပ						
	ROOT ZONE		0.5'_										
	6 inches of organic rich clay	,	J			MC 1		8-10					PP = >4.5 tsf
5365	with sand and gravel, very s	tiff, brown, moist (CL)											
						√ ss		2-2-8					
	SANDSTONE		4.8'		5	2		N=10					
	poorly cemented, light brown	n, moist	<u> </u>			MC		00.04		447	108.5		
5360	CLAYSTONE				= =	3		22-24		14.7	108.5		PP = >4.5 tsf
	moderately weathered, with brown, moist	gravel in matrix,											
	SANDSTONE		9.0'			∬ ss		17-11-9					
	poorly cemented, orangish t	prown moist	<u>10.0'</u>		10	4		N=20					PP = >4.5 tsf
	CLAYSTONE		J										
5355	slightly weathered, gray bro lensing, moist	wn with oxidation											
	SANDSTONE		14.5'		15	MC 5		18-32					PP = >4.5 tsf
	moderately cemented, yello	wish brown with		· · · · ·		_							
	oxidation lensing, moist			· · · · ·	 - -								
5350				· · · · ·	·								
			19.0'		·								
	CLAYSTONE					∕ ss		11-12-14		24.0			
L _	moderately weathered, brow	vnish gray with			20	6		N=26		24.9			PP = >4.5 tsf
L _	oxidation lensing, moist												
5345													
						MC		15-50/4"					
	grades to slightly weathered	1			25	7		10-00/4					
[CONTINUED I		27.0'										
WAT	WATER LEVEL OBSERVATIONS					1	STAF	RTED:	8/2	26/20	FINISI	HED:	8/26/20
WD	☑ Not Encountered	OLSSON, INC 3990 FOX STRE DENVER, COLORAD											
IAD	▼ Not Encountered					01E	DRILLER: VINE LABS LO						
AD	The second seco	DENVER, C	ULUF	NAD		210							
LAD							MET	HOD: CON	I INU(JUS F	LIGH	AUG	ER

	OISSON °	BOREHOLE	REF	POR	TNO	. В-	·11		Sheet 2 of 2			of 2	
PROJ	ECT NAME Westminster Water	2025 Preliminary		CLIEN	Т		C	DM Si	mith				
PROJ	ECT NUMBER 019-	1378		LOCA	ΓΙΟΝ		Westmir	ister,	Colo	orado)		
ELEVATION (ft)	Modified California Sampler MATERIAL D	Split Spoon	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	LL/PI (%)	ADDITIONAL DATA/ REMARKS	
5340	CLAYSTONE												
	slightly weathered, browni lensing, moist	sh gray with oxidation											
	grades to moderately wea	thered		30	$\times \frac{ss}{8}$		15-50/4"		18.4			PP = 2.75 tsf	
<u>5335</u> <u>5330</u> <u>5325</u> 5 <u>325</u> 5 <u>325</u> 5 <u>325</u>	grades to highly weathered	d, sandy, gray		40	× MC 9 × SS 10		15-50/5" 50					PP = >4.5 tsf	
		<i>(</i> 0 0)											
	BASE OF BORIN	49.3' IG AT 49.3 FEET		1	≥ SS 12		50/4"	/				PP = >4.5 tsf	
WAT	WATER LEVEL OBSERVATIONS					STAR	RTED:	8/2	26/20	FINISI	HED:	8/26/20	
WD	-	Not Encountered OLSSON, INC. Not Encountered 3990 FOX STREID DENVER, COLORADO				DRILL CO.: VINE LABS DRILL RIG: ATV							
IAD	▼ Not Encountered ▼ Not Performed				216	DRILLER: VINE LABS LOGGED BY: M. ALMAND							
AD							METHOD: CONTINUOUS FLIGHT AUGER						

\bigcap	olsson	BOREHOLE	RE	POR	T NO	T NO. B-12 Sheet 1 of 2						
PROJI	ECT NAME Westminster Water 2	2025 Preliminary		CLIEN	Т		CI	DM SI	mith			
PROJI	ECT NUMBER 019-1			LOCA	TION		Westmir			orado		
	Modified California						vvestinni				,	
NOL	Sampler	Split Spoon	P∓.r	Ŧ	TYPE ER	S)	%6" UE	TR.	JRE	ISITY	_	ADDITIONAL
ELEVATION (ft)	MATERIAL DE	SCRIPTION	GRAPHIC LOG	DEPTH (ft)	SAMPLE TYPE NUMBER	CLASSIFICATION (USCS)	BLOWS/6" N-VALUE	UNC. STR. (tsf)	MOISTURE (%)	DRY DENSITY (pcf)	(%) (%)	DATA/ REMARKS
	APPROX. SURFACE ELEV. (ft): TOPSOIL	5373.0	<u></u> <u>_</u>	0		0						
	6 inches of organic rich clay				MC 1		9-9					PP = >4.5 tsf
5370	with sand, trace silt and whi light brown, moist (CL)	ite lensing, very stiff,					0.05					
	grades to with trace gravel			5	SS 2		6-8-5 N=13				37/21	PP = >4.5 tsf
		7.0'			MC 3		6-10					PP = >4.5 tsf
 5365	CLAYSTONE											
	highly weathered, sandy, ye	ellowish brown, moist]							
	grades to with oxidation len	sing		10	ss 4		7-11-13 N=24					PP = >4.5 tsf
 <u>5360</u> 					MC		7-19		22.1	100.9		PP = 4.0 tsf
 <u>5355</u>	grades to yellowish gray, bl	ocky		15	5							
	grades to moderately weath organic or lignite lensing	nered, with trace		20	SS 6		14-22-28 N=50					PP = >4.5 tsf
5350					-							
-					MC		9-23					PP = >4.5 tsf
				25	7		9-23					PP = >4.5 ISI
		27.0'										
		NEXT PAGE										
	ER LEVEL OBSERVATIONS	OLSSON,	INC	.			RTED:			FINIS		8/24/20
WD IAD	v Not Encountered	3990 FOX S	TRE	ET	046					DRILL		
AD	<u>↓</u> 21.4 ft after 168Hrs	DENVER, COLOF	ΧAD	U 80	210		HOD: HOL					C M. ALMAND

SRUE DUENT CDM Smith PROJECT NUMBER 019-1378 UOCATION Westminster, Colorado Modified Califonia Split Spoon Image: Split Spoon Image: Split Split Spoon Image: Split		olsson	BOREHOLE	RE	POR		. B-	·12		S	hee	et 2	of 2
PROJECT NUMBER 019-1378 Westminster, Colorado Matterial California Split 8pcon grades for grayish brown, slightly weathered grades to light gray grades to light gray	PROJE	CT NAME	2025 Preliminary		CLIENT	Г		CI		mith			
Notified California Split Spoon Naterial Description Naterial Description Status Split Spoon Status Split Split Spoon Status Split Split Spoon Split S	PROJE	ECT NUMBER			LOCATION								
S345 CLAYSTONE slightly weathered, sandy, yellowish gray, blocky bits SS 21-20- s340 5340 grades to grayish brown, slightly weathered grades to grayish brown, slightly weathered grades to light gray grades to light gray grades to light gray grades to highly weathered, increased sand sase of Borling AT 49.4 FEET Note: Groundwater monitoring well installed following drilling.	ELEVATION (ft)	Sampler		GRAPHIC LOG	DEPTH (ft)	AMPLE TYPE NUMBER							ADDITIONAL DATA/ REMARKS
5345 slightly weathered, sandy, yellowish gray, blocky 5340 5340 5335 grades to gray/sh brown, slightly weathered 40 53 9 14.34 9 14.34 9 14.34 9 14.34 9 14.34 9 14.34 9 14.34 9 11.16.20 20.5 9 11 11 5325 grades to light gray 5326 grades to highly weathered, increased sand 0 5325 grades to highly weathered, increased sand 0 5326 grades to highly weathered, increased sand 0 532 11 500° 12 532 532 13 532 533 533 533 533 533 533 533 533 533 533 5						S	C						
30 8 50/1* PP = 74.3 5340 33 MC 14-34 PP = >4.5 5335 35 11-16.20 20.5 PP = >4.5 5330 9 14-34 PP = >4.5 5330 9 11-16.20 20.5 PP = >4.5 5330 9 45 10 11-16.20 20.5 grades to light gray 45 10 9 9 20.5 grades to light gray 45 11 50/4* PP = 4.01 5325 grades to highly weathered, increased sand content 58 50/5* PP = 2.75 BASE OF BORING AT 49.4 FEET 12 10 11 10 11 10 WATER LEVEL OBSERVATIONS 0LSSON, INC. STARTED: 8/24/20 FINISHED: 8/2 8/24/20 FINISHED: 8/2 12 WATER LEVEL OBSERVATIONS 0LSSON, STREET STARTED: 8/24/20 FINISHED: 8/2 12	<u>5345</u>	slightly weathered, sandy,	yellowish gray, blocky					21.20					
grades to grayish brown, slightly weathered 40 SS 11-16-20 20.5 PP =>4.5 5335 40 SS 11-16-20 20.5 PP =>4.5 5330 9 14.34 40 P 5330 9 14.34 40 PP =>4.5 5330 9 14.34 40 PP =>4.5 5330 9 11-16-20 20.5 PP =>4.5 5330 9 45 11 16-20 20.5 grades to light gray 45 11 50/4" PP =4.01 5325 grades to highly weathered, increased sand content 50.5" PP = 2.75 BASE OF BORING AT 49.4 FEET 12 Note: Groundwater monitoring well installed following drilling. WATER LEVEL OBSERVATIONS 0LSSON, INC. STARTED: 8/24/20 FINISHED: 8/2 WD 型 Not Encountered 0LSSON, STREET DRILL CO:: VINE LABS DRILL RIG:					30								PP = >4.5 tsf
335 9 14-34 PP = 24,3 5335 9 14-34 PP = 24,3 5335 11-16-20 20.5 PP = 24,5 5330 11 16-20 20.5 PP = 24,5 5330 11 16-20 20.5 PP = 24,5 5330 11 50/4* PP = 4,01 5325 grades to light gray 45 11 50/4* 5325 grades to highly weathered, increased sand 49,4* SS 50/5* 5325 grades to highly weathered, increased sand 49,4* SS 50/5* 5325 grades to highly weathered, increased sand 49,4* SS 50/5* BASE OF BORING AT 49.4 FEET Note: Groundwater monitoring well installed following drilling. WATER LEVEL OBSERVATIONS OLSSON, INC. STARTED: 8/24/20 WD< V Not Encountered	 _5340_												
grades to grayish brown, slightly weathered 40 SS 11-16-20 20.5 PP = >4.5 5330 grades to light gray 45 10 11-16-20 20.5 PP = >4.5 5325 grades to light gray 45 11 50/4" PP = 4.01 5325 grades to highly weathered, increased sand content 49.4" SS 50/5" PP = 2.75 Note: Groundwater monitoring well installed following drilling. Note: Groundwater monitoring well installed following drilling. STARTED: 8/24/20 FINISHED: 8/2 WD Q Not Encountered OLSSON, INC. DRILL CO:: VINE LABS DRILL RIG: 8/24/20 FINISHED: 8/2					35			14-34					PP = >4.5 tsf
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 <u>5335</u>												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		grades to grayish brown, s	lightly weathered							20.5			PP = >4.5 tsf
grades to light gray 45 11 5325 grades to highly weathered, increased sand content 49.4' BASE OF BORING AT 49.4 FEET 12 Note: Groundwater monitoring well installed following drilling. WATER LEVEL OBSERVATIONS WD ♀ Not Encountered OLSSON, INC. 3990 FOX STREET	 <u>5330</u> 							50/4"					
grades to highly weathered, increased sand content 49.4' SS 12 50/5" PP = 2.75 BASE OF BORING AT 49.4 FEET 12 Note: Groundwater monitoring well installed following drilling. Note: Groundwater monitoring well installed following drilling. 8/24/20 FINISHED: 8/2 WATER LEVEL OBSERVATIONS WD ♀ Not Encountered OLSSON, INC. 3990 FOX STREET STARTED: 8/24/20 FINISHED: 8/2		grades to light gray			45								<u> </u>
BASE OF BORING AT 49.4 FEET 12 Note: Groundwater monitoring well installed following drilling. WATER LEVEL OBSERVATIONS WD ☑ Not Encountered OLSSON, INC. 3990 FOX STREET	5325		l, increased sand	,				50/5"					
WATER LEVEL OBSERVATIONS OLSSON, INC. STARTED: 8/24/20 FINISHED: 8/2 WD ∑ Not Encountered OLSSON, INC. DRILL CO.: VINE LABS DRILL RIG:					4	12	<u> </u>	<u>50/5"</u>					<u>$PP = 2.75 \text{ tst}$</u>
WD ☑ Not Encountered OLSSON, INC. WD ☑ Not Encountered OLSSON, INC. 3990 FOX STREET DRILL CO.:		Note: Groundwater	monitoring well insta	lled	follov	ving dr	illing	J.					
3990 FOX STREET	WAT						STA	RTED:	8/2	24/20	FINISI	HED:	8/24/20
DENVER, COLORADO 80216 DRILLER: VINE LABS LOGGED BY: M. ALM		-	3990 FOX S	TRE	ET								ATV
AD 21.4 ft after 168Hrs METHOD: HOLLOW STEM AUGER		-	DENVER, COLOF	RAD	O 802	216							C M. ALMAND

APPENDIX C

Laboratory Test Results

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 2

PROJECT NAME: Westminster Water 2025 Preliminary

PROJECT NUMBER: 019-1378

CLIENT: <u>CDM Smith</u> PROJECT LOCATION: Westminster, Colorado

BORING		SAMPLE	MOISTURE	DRY	VOID	SATURATION	UNCONFINED	STRAIN	A	ITERBERG LIMI	TS		USCS
NUMBER	SAMPLE I.D.	DEPTH (ft)	CONTENT (%)	DENSITY (pcf)	RATIO	(%)	STRENGTH (tsf)	(%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTIC INDEX	P-200	CLASS.
B-1	SS-3	6.0 - 7.5'	21.6						56	20	36		
B-1	MC-4	9.0 - 10.0'	12.7	113.3	0.488	70.5	3.6	4.0					
B-1	SS-7	24.0 - 25.5'	20.5										
B-1	SS-9	34.0 - 35.5'	16.3										
B-1	MC-12	49.0 - 49.3'	11.5										
B-2	SS-3	6.0 - 7.5'	9.5									43.6	
B-2	SS-5	14.0 - 15.5'	10.4										
B-2	SS-9	34.0 - 35.0'	21.4										
B-3	MC-2	3.5 - 4.5'	15.2	103.9	0.622	66.0							
B-3	MC-4	9.0 - 10.0'	22.9	99.6	0.692	89.3							
B-3	MC-10	39.0 - 39.8'	22.6	94.4	0.785	77.6							
B-4	MC-3	6.0 - 7.0'	18.9						40	15	25	64.1	CL
B-4	MC-5	14.0 - 15.0'	17.2	110.3	0.528	87.8	8.2	4.6					
B-4	SS-6	19.0 - 19.8'	15.8										
B-4	SS-10	39.0 - 40.0'	28.8										
B-5	SS-2	3.5 - 5.0'	10.5										
B-5	MC-5	14.0 - 15.0'	4.6										
B-5	SS-8	29.0 - 30.5'	26.4										
B-5	MC-11	44.0 - 44.5'	16.0	102.0	0.653	66.3							
B-6	MC-2	3.5 - 4.5'	10.0	110.1	0.531	50.9							
B-6	SS-3	6.0 - 7.5'	8.2									35.4	
B-6	MC-4	9.0 - 10.0'	9.4	113.9	0.480	52.6	3.8	3.6					
B-6	MC-6	19.0 - 20.0'	21.9										
B-6	SS-7	24.0 - 25.0'	17.4										
B-6	SS-11	44.0 - 45.0'	18.8										
B-7	MC-1	1.0 - 2.0'	12.9	115.3	0.462	75.4							
B-7	MC-3	6.0 - 7.0'	17.0	104.9	0.607	75.6							
B-7	MC-5	14.0 - 14.8'	16.2	107.9	0.562	77.7							
B-7	SS-8	29.0 - 30.5'	27.9										
B-8	SS-1	1.0 - 2.5'							40	17	23		

MC-8

MC-3

SS-6

SS-8

SS-2

MC-5

SS-10

B-10 B-11

B-11

B-11

B-12

B-12

B-12

29.0 - 29.4'

6.0 - 7.0'

19.0 - 20.5'

29.0 - 29.8'

3.5 - 5.0'

14.0 - 15.0'

39.0 - 40.5'

14.2

14.7

24.9

18.4

22.1

20.5

SUMMARY OF LABORATORY RESULTS

14

16

37

PLASTIC

INDEX

30

21

PAGE 2 OF 2

USCS

CLASS.

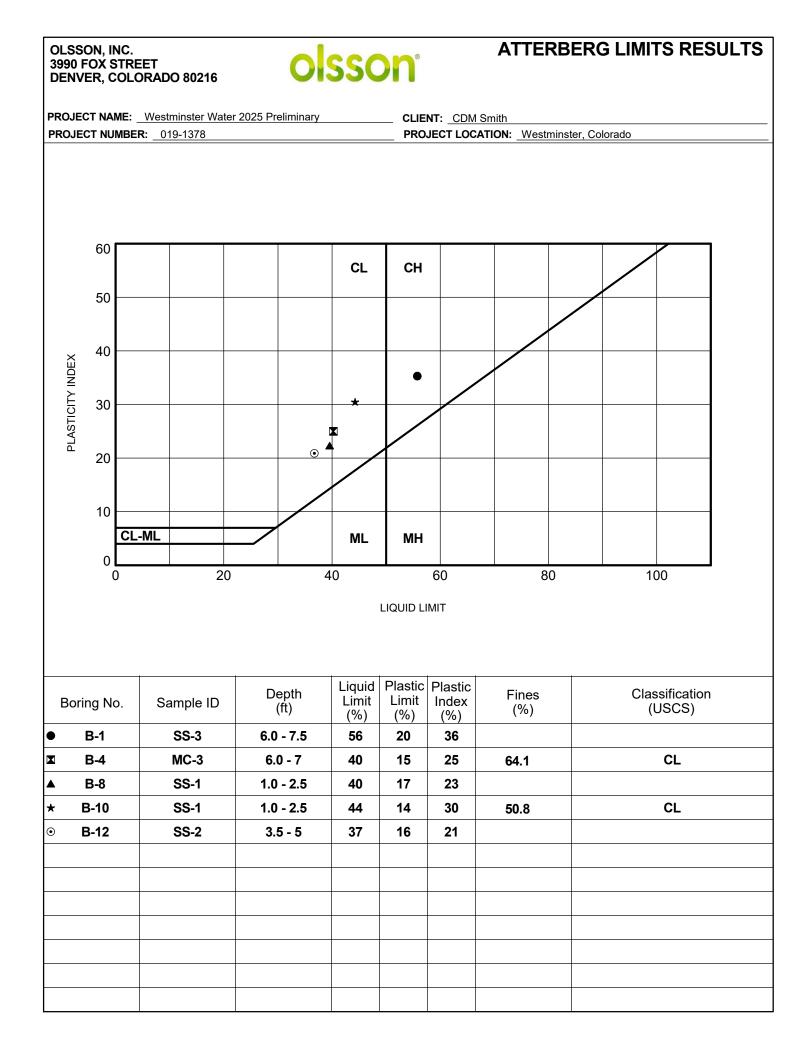
CL

P-200

50.8

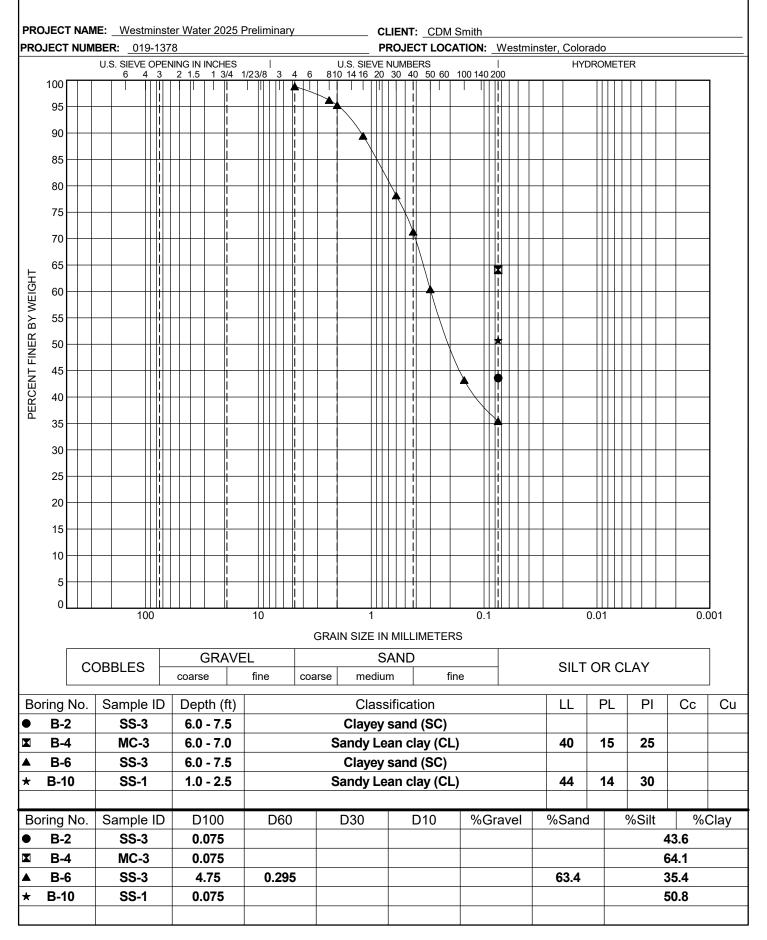
CLIENT: CDM Smith **PROJECT NAME:** Westminster Water 2025 Preliminary PROJECT NUMBER: 019-1378 PROJECT LOCATION: Westminster, Colorado ATTERBERG LIMITS MOISTURE DRY SAMPLE SATURATION UNCONFINED STRAIN VOID BORING SAMPLE DENSITY CONTENT DEPTH STRENGTH RATIO (%) (%) NUMBER LIQUID PLASTIC I.D. (pcf) (%) (ft) (tsf) LIMIT LIMIT **B-8** MC-2 3.5 - 4.5' 7.3 118.3 0.425 46.1 10.6 3.5 23.5 **B-8 SS-5** 14.0 - 15.5' **B-8** MC-6 19.0 - 20.0' 22.6 103.7 0.625 97.8 **B-9** MC-2 3.5 - 4.5' 12.8 108.0 0.561 61.7 7.9 2.3 MC-6 2.8 **B-9** 19.0 - 19.8' 12.5 108.5 0.554 60.7 2.6 **B-10** SS-1 1.0 - 2.5' 11.7 44 **B-10** MC-4 9.0 - 10.0' 12.9 SS-5 **B-10** 14.0 - 15.5' 22.4

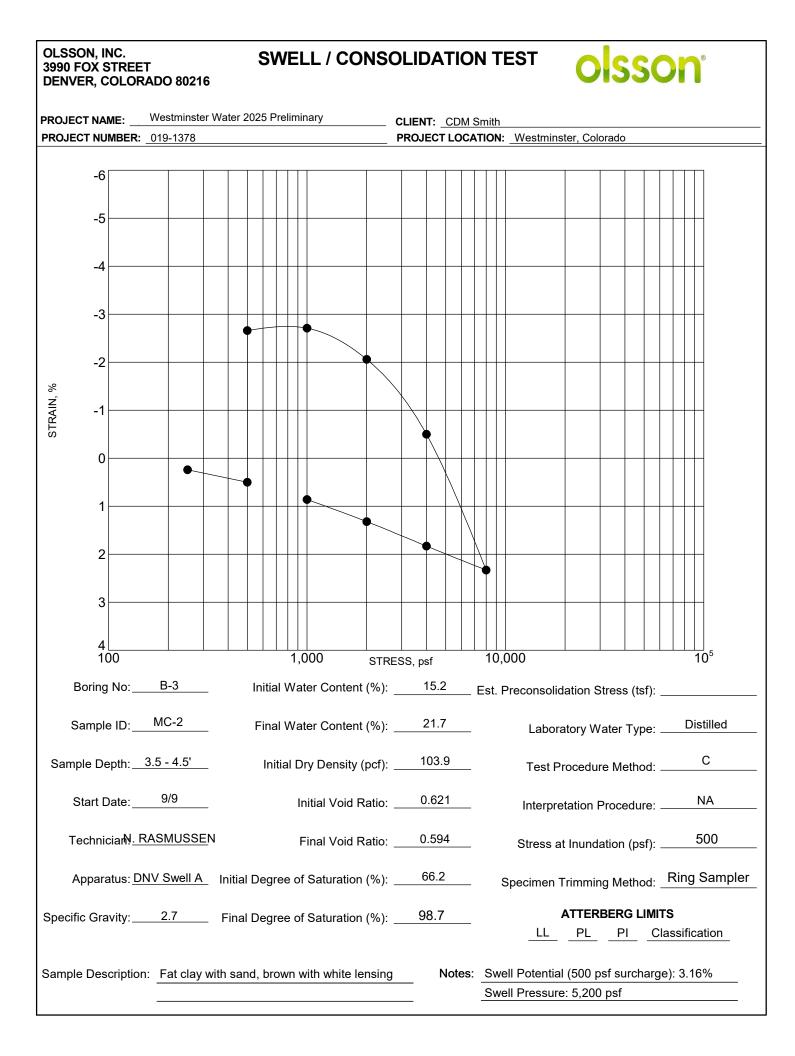
108.5


100.9

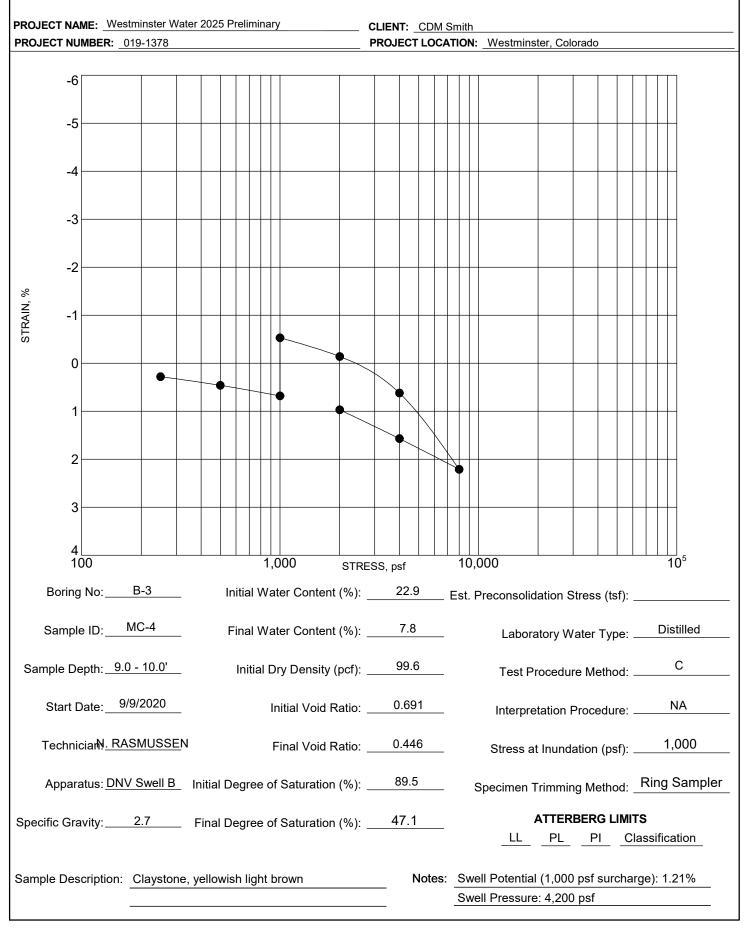
0.554

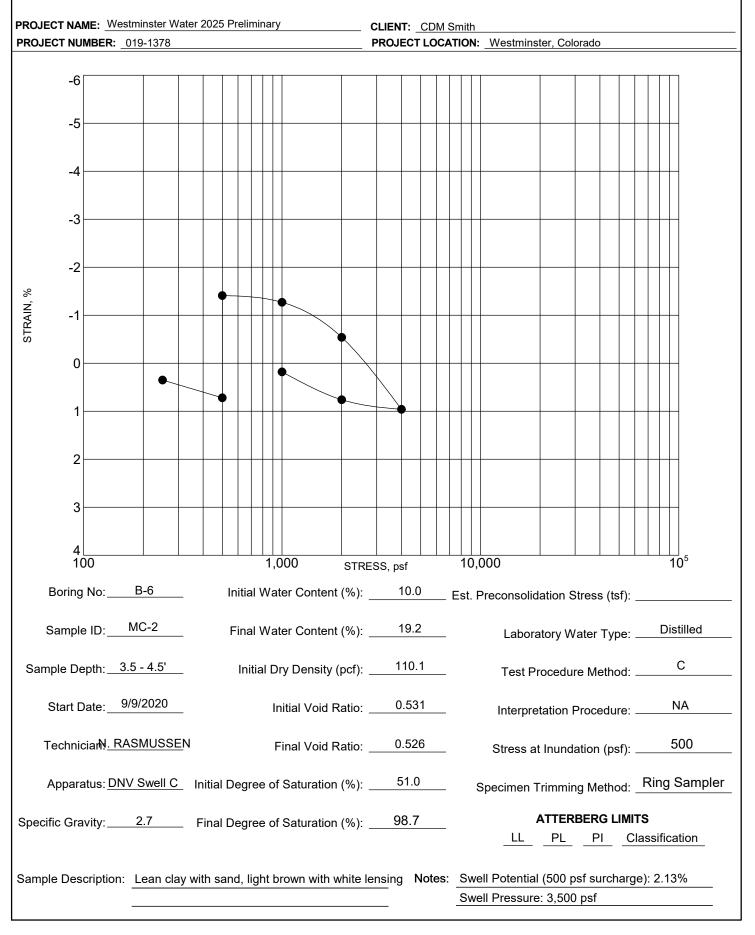
0.671


71.9

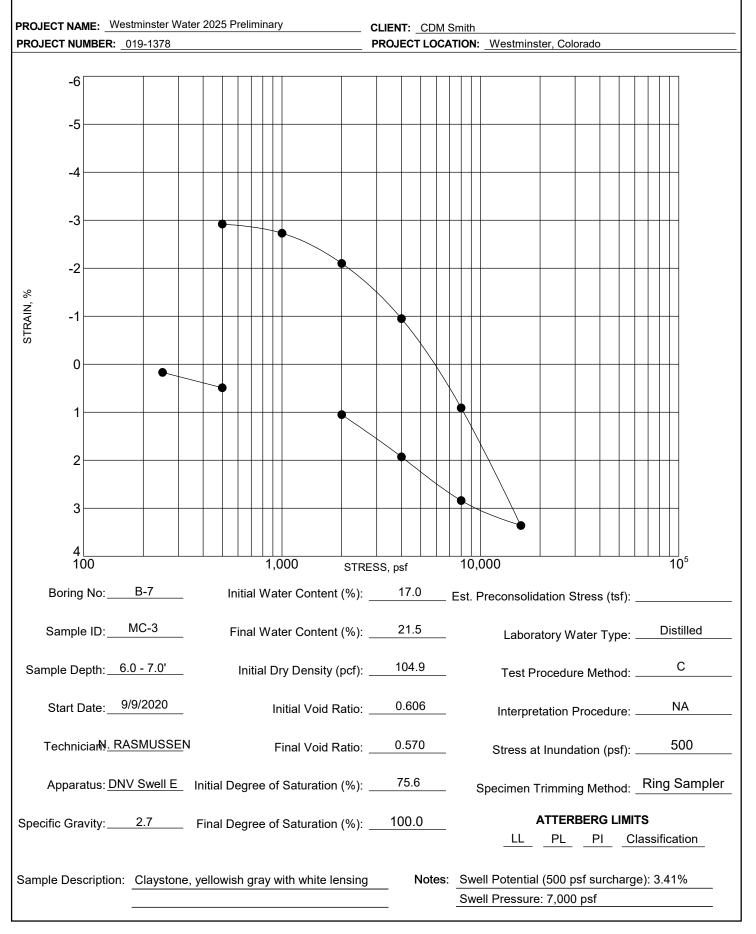

89.0

olsson


GRAIN SIZE DISTRIBUTION


SWELL / CONSOLIDATION TEST

SWELL / CONSOLIDATION TEST



OLSSON, INC. SWELL / CONSOLIDATION TEST ISSOr 3990 FOX STREET **DENVER, COLORADO 80216** PROJECT NAME: Westminster Water 2025 Preliminary CLIENT: CDM Smith PROJECT NUMBER: 019-1378 PROJECT LOCATION: Westminister, Colorado -6 -5 -4 -3 -2 STRAIN, % -1 0 1 2 3 4 10⁵ 100 1,000 10,000 STRESS, psf Initial Water Content (%): <u>12.9</u> Est. Preconsolidation Stress (tsf): _ Boring No: B-7 Sample ID: MC-1 Final Water Content (%): 24.1 Distilled Laboratory Water Type: ____ Initial Dry Density (pcf): ____115.3 С Sample Depth: <u>1.0 - 2.0'</u> Test Procedure Method: _____ Start Date: 9/9/2020 Initial Void Ratio: ____ 0.461 NA Interpretation Procedure: ____ Final Void Ratio: ____0.491___ TechniciarN. RASMUSSEN 150 Stress at Inundation (psf): _____ Apparatus: <u>DNV Swell D</u> Initial Degree of Saturation (%): <u>75.3</u> Specimen Trimming Method: <u>Ring Sampler</u> Specific Gravity: <u>2.7</u> Final Degree of Saturation (%): <u>100.0</u> ATTERBERG LIMITS PL LL PI Classification Sample Description: Lean to fat clay with sand, light brown with Notes: Swell Potential (150 psf surcharge): 6.15% Swell Pressure: 6,900 psf white lensing

SWELL / CONSOLIDATION TEST

Soil Corrosion Suite

3990 Fox Street Denver, CO 80216 TEL 303.237.2072 FAX 303.237.2659

www.olsson.com

	Project Information					
Project Name:	Westminster Water 2025 Preliminary					
Project Number:	roject Number: 019-1378					
Client Name:	lient Name: CDM Smith					
Project Location:	roject Location: Westminster, Colorado					
	Sample and Test Information					
Sample Location:	B-3, 9 to 15.5 feet					
Sample Description:	Claystone, yellowish light brown with oxidation staining					
Laboratory Technician:	N. Rasmussen					
Date Tested:	9/29/2020					
	Test Results					

Test Results

Water Soluble Sulfate (Colorado Procedure CP-L-2103)						
Dilution	Concentration, % mass					
100:1	1	100	0.01			

Water Soluble Chloride (Colorado Procedure CP-L-2104)					
Dilution	Concentration, ppm	Concentration, % mass			
Second	225	0.023			

pH (ASTM G51)							
pH Meter Reading							
7.22							

Electrical Resistivity (ASTM G57)						
Readings (ohm*cm)						
364						
357		Lowest Resistivity (ohm*cm)				
413		357				

Sample portion passing the #10 sieve used in testing. Each reading performed after additional water was added.

Soil Corrosion Suite

3990 Fox Street Denver, CO 80216 TEL 303.237.2072 FAX 303.237.2659

www.olsson.com

	Project Information						
Project Name:	Westminster Water 2025 Preliminary						
Project Number:	roject Number: 019-1378						
Client Name:	lient Name: CDM Smith						
Project Location:	roject Location: Westminster, Colorado						
	Sample and Test Information						
Sample Location:	B-10, 3.5 to 7.5 feet						
Sample Description:	Sandy clay and clayey sand, brown with white lensing						
Laboratory Technician:	aboratory Technician: N. Rasmussen						
Date Tested:	9/29/2020						
Test Results							

lest Results

Water Soluble Sulfate (Colorado Procedure CP-L-2103)						
Dilution	Reading	Concentration, mg/L	Concentration, % mass			
100:1	9	900	0.09			

Water Soluble Chloride (Colorado Procedure CP-L-2104)						
Dilution	Concentration, ppm	Concentration, % mass				
Second	189	0.019				

pH (ASTM G51)						
pH Meter Reading						
7.63						

Electrical Resistivity (ASTM G57)									
Readings (ohm*cm)									
801]								
517]								
479]								
457	Lowest Resistivity (ohm*cm)								
465	457								

Sample portion passing the #10 sieve used in testing. Each reading performed after additional water was added.

R Value

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION DATE TESTED TECHNICIAN	Olsson Associates 2494-038 Westminster WTP 019-1378 Westminster, CO 09/24/20 ALH		BORING DEPTH SAMPLE DATE SA SAMPLE DESCRII	NO. MPLED D BY		Bulk (B-6) 1-5'
		Sa	mple Condition	าร		
Mass of Mass of V S	Wet Soil & Pan (g): Dry Soil & Pan (g): Mass of Pan (g): /et Soil & Mold (g): Mass of Mold (g): Sample Height (in): Wet Density (pcf): Dry Density (pcf): et Density (kg/m ³): yr Density (kg/m ³): Moisture (%):					
			R Value Data			
Exuda 2000 lbs. Di Un	tion Pressure (lbs): tion Pressure (psi): Dial Reading (psi): splacement Turns: corrected R Value: Corrected R Value:					
1	R Va	alue vs. Exud	ation Pressu	re (psi)		
0.9 0.8 0.7						Corrected R Value at 300 psi Exudation Pressure <5
0.6 0.5 0.4 20.3 0.2 0.1 0 0 0	50 100 Ex t	150 20 Idation Pressur		300	350	
NOTES:				on. This occu	ired whe	nold during the n the 5520-kPa [800-psi] point ts were lite
Data entry by: Checked by: File name:	ALH DPM 2494038R Value	ASTM D2844_0				Date: 09/25/20 Date: 09/25/20

Constant Rate of Flow Flexible Wall Hydraulic Conductivity

ASTM D 5084 Method D

CLIENT		Olsson Asso	ociates		BORI	NG NO.			B-12	
JOB NO.		2494-038			DEPT	Н			14-15'	
PROJECT		Westminste	r WTP		SAMP	LE NO.			MC-5	
PROJECT N	Ο.	019-1378			DATE	SAMPLED				
LOCATION		Westminste	r, CO		SAMP	LED BY				
DATE TESTI	ED	09/16/20			DESC	RIPTION				
TECHNICIAN	N	CAL								
				Sa	mple Cond	litions				
Before	Test Mass of	Wet Soil (a):	289.4	04			Density (pcf):	124.1		
	Test Mass of	(0)	302.1				Density (pcf):			
	ss of Dry Soil		353.6			-	ensity (kg/m ³):			
	-	ss of Pan (g):	117.0				ensity (kg/m ³):			
		Diameter (in):	1.93			-	Moisture (%):			
		e Height (in):	3.05			Final Wet	Density (pcf):	140.2		
	Assumed Spe	ecific Gravity:	2.650				Density (pcf):			
						Final Wet D	ensity (kg/m³):	2246		
	Back Pr	ressure (psi):	38.0			Final Dry D	ensity (kg/m ³):	1759		
	Cell Pr	ressure (psi):	44.9			Final	Moisture (%):	27.7		
							calculated usin	ng volume char	nge method	
				P	ermeability	from ASTM D	4767.			
										Corrected
Pump	Percentage	Rate of	Pump	Head Loss		Effective	Effective Stress (kPa) ·	Temperature	Temperature	Hydraulic
Setting	of Pump	Flow (cc/s)	Pressure	(cm)	Gradient - i	Stress (psi) -		(°C)	Correction	Conductivity
	Setting		(psi)			$\sigma_{_3}$	$\sigma_{_3}$			(cm/s) - k
45		9.47E-06	0.082	5.77	0.75	6.86	47.3	21.9	0.956	6.9E-07
45		9.47E-06	0.133	9.36	1.22	6.83	47.1	21.9	0.956	4.2E-07
45		9.47E-06	0.173	12.18	1.59	6.81	47.0	22.0	0.953	3.2E-07
45		9.47E-06	0.199	14.01	1.83	6.80	46.9	22.1	0.951	2.8E-07
45		9.47E-06	0.207	14.57	1.90	6.80	46.9	21.4	0.967	2.7E-07
45		9.47E-06	0.200	14.08	1.84	6.80	46.9	21.4	0.967	2.8E-07
45		9.47E-06	0.182	12.81	1.67	6.81	46.9	21.1	0.974	3.1E-07
					Test Resu	ilte				
					103111030	11.5				
		Ave	rage Corre	cted Hydrau	Ilic Conduc	tivity (cm/s):	2.9E-07			
NOTES:										
Data entry t	ov:	CAL						Date:	09/18/20	
Checked by	•	KR							09/23/20	
File name:			Permeabili	ty Method D	ASTM D5	084_0.xlsm			Page 1 of 2	
13				-						

Г

Constant Rate of Flow Flexible Wall Hydraulic Conductivity

ASTM D 5084 Method D

CLIENT IOB NO. PROJECT PROJECT NO OCATION DATE TESTEI FECHNICIAN). D Initial Sa Final Sa Cell Pr Back Pr Effective Effective	Olsson Asso 2494-038 Westminster 019-1378 Westminster 09/16/20 CAL turation (%): turation (%): tessure (psi): stress (psi): Stress (psi): Stress (kPa): rrection (cc):	WTP		DEPT SAMP DATE SAMP DESC Consolidatio	LE NO. SAMPLED LED BY RIPTION DN DN DN DN DN DN DN DN DN DN DN DN DN	Sample (cc): Sample (cc): olidation (cc): Reading (in): Reading (in): t Change (in): al Area (cm ²):	145.5 134.5 17.8 0.200 0.230 0.03 18.80	B-12 14-15' MC-5 	
	Square	Cell ID: Burette	3P				al Area (cm²):	17.55		
Elapsed Time (min) T 0 0.1 0.25 0.5 1 2 4 9 16 30 60 120 240 360	Root of ime (vmin) 0.00 0.32 0.50 0.71 1.00 1.41 2.00 3.00 4.00 5.48 7.75 10.95 15.49 18.97	Reading (cc) 15.40 16.30 16.40 16.50 16.65 16.85 17.10 17.40 17.60 17.90 18.30 18.95 19.80 20.40	Volume Change (cc) 0.00 0.90 1.00 1.10 1.25 1.45 1.70 2.00 2.20 2.50 2.90 3.55 4.40 5.00	 0.0 1.0 0.1 0.2 (cc) 0.1 0.2 0.3 	.0	5.0	10.0 re Root of Ti		15.0	20.0
					Saturation					
Cell Pressu	ire (psi) Final	Pore Pres	sure (psi) Final	Burette Initial	Reading (cc) Final	Back Pressure (psi)	Volume Change (cc)	Effective Stress (psi)	∆u (psi)	В
40.0	50.0	38.9	48.4	15.30	15.40	38.0	0.10	2.0	9.5	0.95
ile name: 2	494038	Permeabilit	v Method D		5084 0 xlcm				Page 2 of 2) -

Image Attachment

CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Tetra Tech 2592-052 Wild Horse Reservoir 200-23365-20001 Hartsel CO		BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DESCRIPTION	B-12 14-15' MC-5 cal. Liner
	CLIENT ATT JOB NO. BORING DEPTH SAMPLE NO. TEST TYPE CONFINING STRESS ASTM DESIGNATION	01550n Tuc 2494-038 B-12 14-15' MC-5 Tx Perm 6.9 psi 994 psf D5084 Muthod D		
NOTES				
File name:	2494038_perm_MC-5_14-15	5.pdf		

Constant Rate of Flow Flexible Wall Hydraulic Conductivity

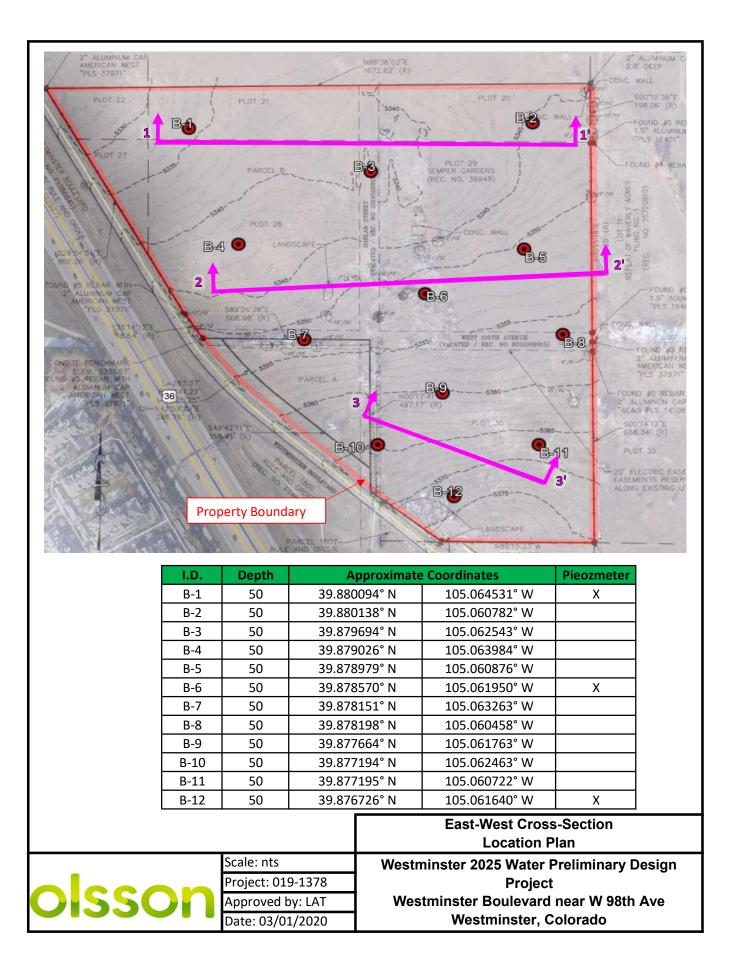
ASTM D 5084 Method D

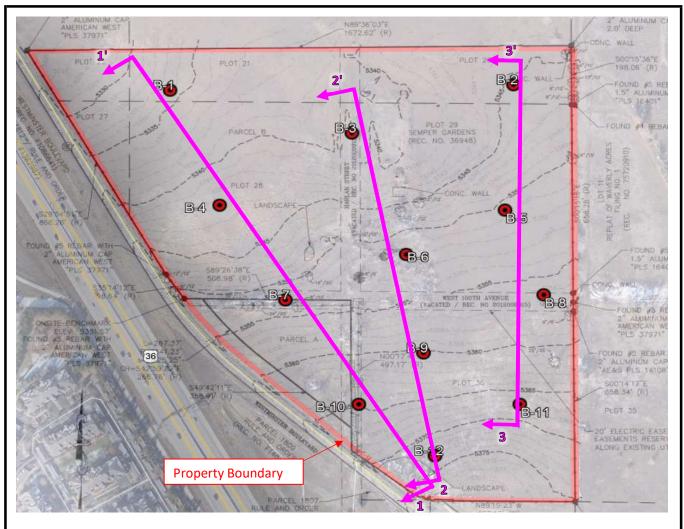
Data entry Checked by File name:	•	CAL KR 2494038	Permeabili	ty Method D	O ASTM D5	084_1.xlsm			09/22/20 09/23/20 Page 1 of 2	
NOTES:		Ave	rage Corre	cted Hydrau	Ilic Conduc	tivity (cm/s):	5.4E-06			
					Test Resu	ılts				
		3.33E-04 3.33E-04	0.335 0.336	23.59 23.66	3.04 3.05	3.33 3.33	23.0 23.0	21.8 21.7	0.958 0.960	5.4E-06 5.4E-06
		3.33E-04 3.33E-04	0.344 0.341	24.22 24.01	3.12 3.10	3.33 3.33	22.9 23.0	21.7 21.7	0.960 0.960	5.3E-06 5.4E-06
		3.33E-04	0.320	22.53	2.91	3.34	23.0	21.5	0.965	5.7E-06
Pump Setting	Percentage of Pump Setting	Rate of Flow (cc/s) 3.33E-04	Pump Pressure (psi) 0.320	Head Loss (cm) 22.53	Gradient - i 2.91	Effective Stress (psi) - Ø ₃ 3.34	Effective Stress (kPa) - σ ₃ 23.0	Temperature (°C) 21.4	Temperature Correction 0.967	Correcte Hydraulie Conductiv (cm/s) - 5.7E-06
				P	ermeability		-			
						Final density from ASTM D	calculated usin 4767.	g volume char	nge method	
		essure (psi): essure (psi):	81.5			-	Moisture (%):	31.3		
	Rack Pr	essure (psi):	78.0				ensity (kg/m ³): ensity (kg/m ³):	2004 1526		
	Initial Sample Assumed Spe	- · ·	3.05 2.650			Final Dry	Density (pcf):	125.1 95.3		
	C	Diameter (in):	1.93			Initial	Moisture (%): Density (pcf):	22.2		
Ма	ss of Dry Soil Mas	and Pan (g): as of Pan (g):	352.0 123.5				ensity (kg/m ³): ensity (kg/m ³):	1905 1559		
After	Test Mass of	Wet Soil (g):	299.9			Initial Dry	Density (pcf):	97.3		
Poforo	Test Mass of	Wat Sail (a):	279.2	Sa	mple Cond		Density (pcf):	118.9		
ECHNICIA	N	CAL								
DATE TEST		09/16/20			DESC	RIPTION				
PROJECT N	Ю.	019-1378 Westminster	. CO			SAMPLED LED BY				
ROJECT		Westminster	WTP	SAMPLE NO.					MC-3	
OB NO.		Olsson Asso 2494-038	olates		DEPT	NG NO. H			B-12 6-7'	

Constant Rate of Flow Flexible Wall Hydraulic Conductivity

ASTM D 5084 Method D

CLIENT JOB NO. PROJECT PROJECT N OCATION DATE TESTI FECHNICIAI	O. ED N	Olsson Asso 2494-038 Westminste 019-1378 Westminste 09/16/20 CAL	r WTP r, CO 84.1		DEPT SAMP DATE SAMP DESC Consolidatio	LE NO. SAMPLED LED BY RIPTION Dn	⁻ Sample (cc):		B-12 6-7' MC-3 	
Cell E	Cell Pr Back Pr Effective	turation (%): ressure (psi): stress (psi): Stress (psi): Stress (kPa): rrection (cc): Cell ID:	100.0 81.5 78.0 3.5 24.1 13.99 4P		Fiı Volume Chanç	ge After Cons Initial Dial Final Dial Heigh Initi	Sample (cc): olidation (cc): Reading (in): Reading (in): t Change (in): al Area (cm ²): al Area (cm ²):	10.9 0.200 0.202 0.002 18.89		
Elapsed	Square Root of	Burette Reading	Volume			Cons	olidation	Data		
Time (min)	Time (√min)	(cc)	Change (cc)	0.0)					
0	0.00	1.00	0.00							
0.1	0.32	1.15	0.15	0.1 -						
0.25	0.50	1.20	0.20							
0.5	0.71	1.20	0.20	0.1 -						
1	1.00	1.20	0.20	(cc)						
2	1.41	1.25	0.25	Volume Change (cc)	¢					
4	2.00	1.30	0.30	an						
9	3.00	1.30	0.30	ຽ 0.2 -	deq					
16	4.00	1.30	0.30	me						
30	5.48	1.30	0.30	- 0.3						
60	7.75	1.30	0.30	>						
120	10.95	1.30	0.30	0.3 -	- b-					
240	15.49	1.30	0.30	0.0				-		-
360	18.97	1.30	0.30	0.4 -						
				0.4	0	5.0 Squa	10.0 re Root of Ti		15.0	20
					Saturation					
Cell Press	sure (psi)	Pore Pres	ssure (psi)	Burette	Reading (cc)	Back Pressure	Volume Change (cc)	Effective Stress (psi)	∆u (psi)	В
Initial	Final	Initial	Final	Initial	Final	(psi)		,		
40.0	50.0	38.8	46.6	11.90	12.90	38.0	1.00	2.0	7.8	0.78
50.0	60.0	48.9	57.5	12.80	13.60	48.0	0.80	2.0	8.6	0.86
60.0	70.0	58.9	67.8	13.50	14.20	58.0	0.70	2.0	8.9	0.89
70.0	80.0	68.9	78.1	14.10	14.80	68.0	0.70	2.0	9.2	0.92
80.0	90.0	78.9	88.5	14.90	14.90	78.0	0.00	2.0	9.6	0.96
ile name:	2494038	Permeabilit	y Method D	ASTM D	5084_1.xlsm				Page 2 of 2	2


Image Attachment



CLIENT JOB NO. PROJECT PROJECT NO. LOCATION	Olsson Associates 2494-038 Westminster WTP 019-1378 Westminster, CO		BORING NO. DEPTH SAMPLE NO. DATE SAMPLED DESCRIPTION	MW-4 37-39' 8/13/20 soil
		CLIENT ATT JOB NO. BORING DEPTH SAMPLE NO TEST TYPE CONFINING ASTM DESIG	STRESS 5	sen Tre 194-038 -12 -7' -7' -7' -7' -7' -7' -7' -7' -7' -7'
NOTES				
File name:	2494038_PERM_B12_N	IC3.pdf		

APPENDIX D

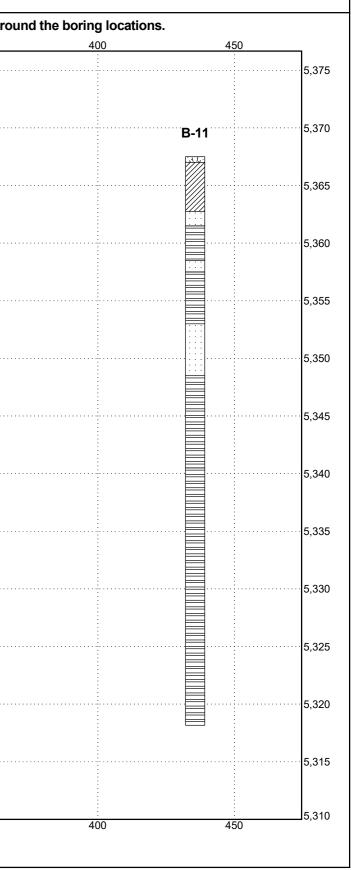
Site Cross-Sections and Surficial Soil Zones

	I.D.	Depth	A	pproximate	e Coordinates	Pieozmeter
	B-1	50	39.880)094° N	105.064531° W	Х
	B-2	50	39.880	0138° N	105.060782° W	
	B-3	50	39.879	9694° N	105.062543° W	
	B-4	50	39.879	9026° N	105.063984° W	
	B-5	50	39.878	3979° N	105.060876° W	
	B-6	50	39.878	3570° N	105.061950° W	Х
	B-7	50	39.878	3151° N	105.063263° W	
	B-8	50	39.878	3198° N	105.060458° W	
	B-9	50	39.877	7664° N	105.061763° W	
	B-10	50	39.877	7194° N	105.062463° W	
	B-11	50	39.877	7195° N	105.060722° W	
	B-12	50	39.876	5726° N	105.061640° W	X
					North-South Cros Location F	
		Scale: nts		Westn	ninster 2025 Water	Preliminary Design
		Project: 01	9-1378		Project	t
olsso		Approved b	oy: LAT	Wes	tminster Boulevard	near W 98th Ave
		Date: 03/0	1/2020		Westminster, C	Colorado

OLSSON, IN 3990 FOX ST DENVER, CO	C. IREET DLORADO 80216	olsson	GEOLOGIC East-West Cross	S-Section 1	USCS High Plasticity Clay	Sandstone
	IE _Westminster Water 2025 Preliminary_ IBER _019-1378		LIENT <u>CDM Smith</u> ROJECT LOCATION Westminster, Colorado			
	NOTE: Soil st	tratification, as shown on the geologic profile, represe	nts soil conditions at the boring locations: I	nowever, variations may occur be	etween or around the boring locations.	
	0 100	200 300 400	500 600	700 800	900 1,000	1,100
5,350 ······						5,350
					B-2	2
5,345					7	5,345
			В-3			
5,340			المؤنوا			5,340
5,335	B-1					5,335
5,330	//					5,330
						∑
£ 5,325						5,325
(f) no						0,020
Ele vation 5,320 ······	· · · · \					5 000
Ш 5,320						5,320
5,315						5,315
						¥
5,310				······		5,310
5,305 ······						5,305
5,300 ······						5,300
5,295 ······						5,295
5,290						
5,285						5,285
5,280	0 100	200 300 400	500 600	700 800	900 1,000	5,280
GROUI ∑ DEPT	NDWATER GROUNDWATER GROUND HWHILE TOPTH IMMEDIATELY TOPTH ILLING AFTER DRILLING DRIL	WATER AFTER		700 000	300 1,000	1,100
DR	ILLING AFTER DRILLING DRIL	LING	Distance Along Baseline (ft)			

OLSSON, INC. 3990 FOX STR DENVER, COL	EET	olsson	GEOLOGIC PROFILE East-West Cross-Section 2	Topsoil	USCS Low to High Plasticity Clay USCS Low Plasticity Clay	
	Westminster Water 2025	Preliminary	CLIENT CDM Smith	_		
PROJECT NUMBE			PROJECT LOCATION Westminster, Colorado	_		
	NO	TE: Soil stratification, as shown on the geologic profile, repre-	esents soil conditions at the boring locations: however, variati			
	0	<u>100 200 300 40</u>	10 <u>500</u> 600 700	800	900 1,000 1,100	
5,360						
					B-8	
		B-7				
5,355		В-1	B-6			
				B-5		
5,350			N			
5,345	B-4					
5,340				· · · · · · · · · · · · · · · · · · ·		
						-,
€ 5,335			·····			
tion						
С Пекаціон 5,330						
						0,000
5,325						
5,320	· · · · · · · · · · · · · · · · · · ·					
0,020						0,020
5,315	· · · · · · · · · · · · · · · · · · ·					
				T		
5,310	· · · · · · · · · · ·					
0,010						0,010
5,305	······		·····			
5,300						
						0,000
5,295						
5,290						5,290
GROUND		100 200 300 40 GROUNDWATER	0 500 600 700	800	900 1,000 1,100	
	WATER GROUNDWATER WHILE DEPTH IMMEDIATEL	DRILLING	Distance Along Baseline (ft)			

OLSSON, INC 3990 FOX ST DENVER, CO	C. REET DLORADO 80216	olsson		GEOLOGIC P East-West Cross-Se	ROFILE ection 3	osoil ale
PROJECT NAM PROJECT NUM	E Westminster Water 2025 Prelimina BER 019-1378	ary	CLIENT <u>CDM Smit</u> PROJECT LOCATIO	th DN_Westminster, Colorado		
		il stratification, as shown on the geologic			ever, variations may o	ccur between or
	0	50 100	150 200	250	300	350
5,375			·····		B-12	
					31//	
5,370						
	B-10					
5,365	······					
-,						
		B-9				
5,360			·····			
E 255						
5,355						
Ê					Y	
Elevation (ff)						
vati						
E E						
5,345		·····				
5,340						
0,010						
5,335	· · · · · · · · · · · · · · · · · · ·					:
5 000						
5,330						
5,325	· · · · · · · · · · · · · · · · · · ·	····				
5,320						
5,315						
-,						
5,310	0	50 100	150 200	250	300	350
GROUN ∑ DEPTH	NDWATER GROUNDWATER GRO H WHILE YDEPTH IMMEDIATELY Y DE LLING AFTER DRILLING I	OUNDWATER PTH AFTER				
DRI	LLING AFTER DRILLING	DRILLING	Distan	ce Along Baseline (ft)		


7	

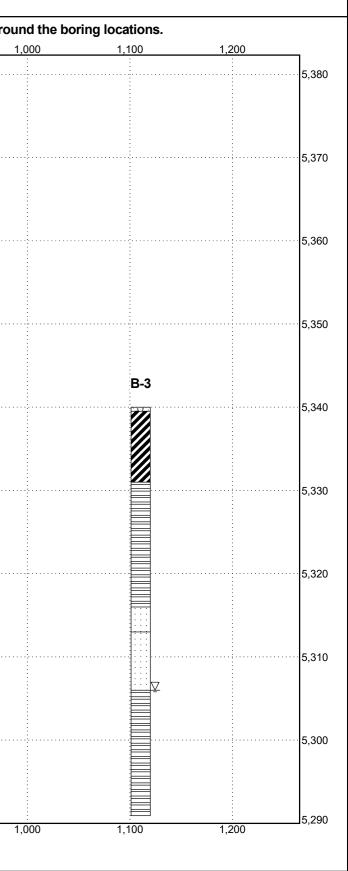
USCS Low Plasticity Clay USCS Low Plasticity Sandy Clay

:	:	:	:	
7		/	[]	/. /. Z

Sandstone

USCS Clayey Sand

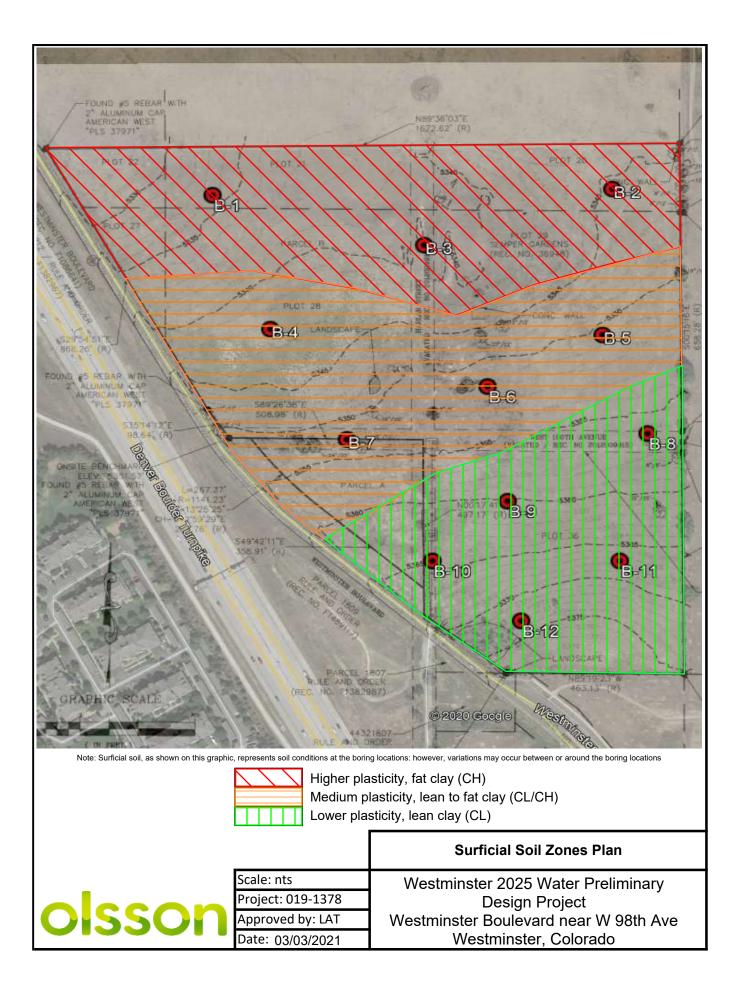
OLSSON, IN 3990 FOX S DENVER, C	IC. TREET OLORADO 80216	olsson		GEOL North-South (OGIC PROFILE Cross-Section 1	Topsoil Shale USCS Clayey Sand	USCS High Plasticity Clay USCS Low to High Plasticity Clay USCS Low Plasticity Clay	USCS Low Plasticity Sandy Clay	
	ME <u>Westminster Water 2025 Preliminary</u> MBER 019-1378		CLIENT <u>CDM Smith</u> PROJECT LOCATION	Westminster, Colorado				Ciay	
		tification, as shown on the geologic profi			tions: however, variatio	ns may occur between o	around the boring locations.		
	0 20	0 400	600	800	1,000 :	1,200	1,400	1,600	
5,380								5,380	
	B-12								
5,370									
5,370		B-10						5,370	
5,360								5,360	
			B-7						
5,350								5,350	
f.					B-4				
on (f									
Elevation (ft)							B-1	5,340	
5,330								5,330	
5,320								5,320	
5,310						4		5,310	
5,300								5,300	
								0,000	
5,290								5,290	
5,280 GROU	: : 0 20 INDWATER GROUNDWATER GROUNDWA	0 400 ITER	600	800	1,000	1,200	1,400	1,600	
	INDWATER GROUNDWATER GROUNDWA TH WHILE VDEPTH IMMEDIATELY DEPTH AFT RILLING AFTER DRILLING DRILLING	ER G	Distance	Along Baseline (ft)					


OLSSON, INC. 3990 FOX STREET DENVER, COLORADO 80216	olsson	GEOLOGIC PROFILE North-South Cross-Section 2		
PROJECT NAME _Westminster Water 2025 Preliminary PROJECT NUMBER _019-1378		CLIENT CDM Smith PROJECT LOCATION Westminster, Colorado	_	
		represents soil conditions at the boring locations: however, varia		
0 100	<u>200 300 400</u>	<u>500 600 700 8</u>	<u>800 900</u>	
5,380				
B-12				
5,370				
	B-9			
5 200	B-9			
5,360				
		B-6		
5,350				
Levation (f) (f) (f) (f) (f) (f) (f) (f) (f) (f)				
atio				
		Ţ		
5,330				
5,320				
		$\blacksquare \mathbf{Y}$		
5,310	······			
5,300				
5,290				
0 100	200 300 400 IDWATER	500 600 700	800 900	
GROUNDWATER GROUNDWATER GROUN ∑ DEPTH WHILE ▼DEPTH IMMEDIATELY ▼ DEPTH DRILLING AFTER DRILLING DRI	HAFTER	Distance Along Baseline (ft)		

USCS High Plasticity Clay USCS Low to High Plasticity Clay

Shale

USCS Low Plasticity Clay


PROJECT NAME Westminister Water 2025 Preliminary CLIENT CDM Smith PROJECT NUMBER 019-1378 PROJECT LOCATION Westminister, Colorado	OLSSON, INC. 3990 FOX STREET DENVER, COLORADO 80216			olsson	GEOLOGIC PROFILE North-South Cross-Section 3			Topsoil Shale USCS Low Plasticity Clay		
NOTE: Soll statisfication, as shown on the geologic profile, represents soil conditions at the boring locations: however, variations may occur between or an analysis of the solution of the geologic profile, represents soil conditions at the boring locations: however, variations may occur between or an analysis of the solution of the geologic profile, represents soil conditions at the boring locations: however, variations may occur between or an analysis of the solution of the geologic profile, represents soil conditions at the boring locations: however, variations may occur between or an analysis of the solution of the geologic profile, represents soil conditions at the boring locations: however, variations may occur between or an analysis of the solution of the so	PROJECT NAME Westminster Water 2025 Preliminary CLIENT CDM Smith									
		NOTE: Soil stratification, as shown on the geologic profile, represents soil conditions at the boring locations: however, variations may occur between or arc								
5.300 B-6 5.300 B-7 5.300 B-7 <t< th=""><th> </th><th>0</th><th>100</th><th>200 300</th><th>400</th><th>500</th><th>600</th><th>700</th><th>800 9</th></t<>		0	100	200 300	400	500	600	700	800 9	
5300 530 53	5,370	B-11						: :		
5300 530 53						-				
5300 530 53										
5300 530 53										
5.300 6.300 5.	5,360				БО					
		· · · ·			D-0					
							B-5			
5.300 5.	5,350									
5.330 5.320 5.320 5.300 5.										
5.330 5.320 5.320 5.300 5.										
5.330 5.320 5.320 5.300 5.										
5.330 5.320 5.320 5.300 5.	<u>€</u> 5,340									
5.330 5.320 5.320 5.300 5.	atio									
5.330 5.320 5.320 5.300 5.										
5,320 5,320 5,300 5,300 5,300 5,300 CROUNDWATER ORDUNATER ORDUNATER CROUNDWATER ORDUNATER CROUNDWATER CROUNDWATER ORDUNATER CROUNDWATER ORDUNATER CROUNDWATER ORDUNATER CROUNDWATER CROUN										
5,320 5,320 5,300 5,300 5,300 5,300 CROUNDWATER ORDUNATER ORDUNATER CROUNDWATER ORDUNATER CROUNDWATER CROUNDWATER ORDUNATER CROUNDWATER ORDUNATER CROUNDWATER ORDUNATER CROUNDWATER CROUN	5 330									
5,310 5,310 5,300 5,200 5,000	0,000									
5,310 5,310 5,300 5,200 5,000										
5,310 5,310 5,300 5,200 5,000										
5,310 5,310 5,300 5,200 5,000	5 320									
5,300 5,290 5,290 0 100 200 300 400 500 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 800 800 800 800 800 8	5,520									
5,300 5,290 5,290 0 100 200 300 400 500 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 800 800 800 800 800 8										
5,300 5,290 5,290 0 100 200 300 400 500 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 800 800 800 800 800 8								_		
5,300 5,290 5,290 0 100 200 300 400 500 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 600 700 800 800 800 800 800 800 8	5 010							¥. ⊻.		
5,290 0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER GROUNDWATER DEPTH WHILE VDEPTH IMMEDIATELY VDEPTH AFTER	5,310				₽					
5,290 0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER GROUNDWATER DEPTH WHILE VDEPTH IMMEDIATELY VDEPTH AFTER						-				
5,290 0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER GROUNDWATER DEPTH WHILE VDEPTH IMMEDIATELY VDEPTH AFTER										
5,290 0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER GROUNDWATER DEPTH WHILE VDEPTH IMMEDIATELY VDEPTH AFTER										
0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER ∑ DEPTH WHILE ▼DEPTH IMMEDIATELY ▼ DEPTH AFTER	5,300				·····			······		
0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER ∑ DEPTH WHILE ▼DEPTH IMMEDIATELY ▼ DEPTH AFTER										
0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER ∑ DEPTH WHILE ▼DEPTH IMMEDIATELY ▼ DEPTH AFTER										
0 100 200 300 400 500 600 700 800 9 GROUNDWATER GROUNDWATER ∑ DEPTH WHILE ▼DEPTH IMMEDIATELY ▼ DEPTH AFTER	5 200									
			100 WATER GROUNDWATE	200 300 R	400	500	600	700	800 9	
	⊥ DEPT DR	TH WHILE DEPTH IMM	EDIATELY I DEPTH AFTER RILLING DRILLING	1		Distance Along F	Baseline (ft)			

USCS High Plasticity Clay
USCS Clayey Sand
USCS Low to High
Plasticity Clay

